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Abstract

In many biomedical and health studies, multivariate data arise from repeated measurements on a sample of
subjects over time. In order to analyze such longitudinal data, we need to consider the correlations from the same
subject and it is inappropriate to use a simple multivariate model assuming independence structure. Motivated by
a large scale longitudinal public health study that requires longitudinal data analysis with correlated multivariate
discrete responses from repeated measurements and very high dimensional covariates, we adopt a flexible semi-
parametric approach for simultaneous variable selection and estimation without the requirement of specifying the
full likelihood. Specifically, we propose generalized partially linear single-index models using penalized quadratic
inference functions for longitudinal data in ultra-high dimension. A key feature is that we allow the number of
single-index covariates in the nonparametric term to diverge and even to be in ultra-high dimension. The penal-
ized quadratic inference functions easily incorporate within-subject correlation and pursue efficient estimation,
and the single-index models can incorporate nonlinearity and some interactions while avoiding the curse of di-
mensionality. In this challenging setting, we contribute both an efficient algorithm and new asymptotic theory for
our proposed approach for diverging and even ultra-dimensional covariates and a discrete response in longitudinal
data. We apply our method to investigate diabetes status within a continuing longitudinal public health study with
very high-dimensional genetic variables and phenotype variables.

Keywords: Longitudinal data; Model selection; Multivariate correlated response; Partially linear model;
Single-index model.

1. Introduction

Numerous large scale public health research studies are longitudinal, where participants have repeated mea-
surements taken over time. To analyze such kind of multivariate data that exhibit clear correlation among within-
subject responses, we need to incorporate the correlation structure rather than assuming a simple multivariate
regression model under independence.

One main goal of analyzing these types of longitudinal studies is to identify the genetic and phenotype factors
related to a disease to provide insight into more effective treatment and disease prevention strategies. For example,
researchers have discovered risk factors linked to various disease mechanisms (e.g., Meigs et al. [23]) using the
Framingham data, an ongoing large scale multi-generational health study [6]. Within these types of large-scale
longitudinal studies, while the true correlation among participants is usually difficult to uncover, incorporating
within participant dependence can lead to more efficient estimation. Moreover, the disease of interest measured
over time is sometimes a correlated discrete measure such as diabetes status. This non-normal correlated response
creates a challenge in specifying the joint likelihood for longitudinal data.

In addition to the longitudinal nature of large scale public health studies, more recently, the genotype of par-
ticipants is also collected. These genetic factors are very high dimensional as demonstrated in the Framingham
data which collects a complex array of genetic data, including tens of thousands of single nucleotide polymor-
phisms (SNPs) from each participant. Notably, previous research has linked some genetic factors to disease. For
instance, genomic studies have helped identify mechanisms of hypertension and diabetes [39]. In these very high
dimensional settings, variable selection is imperative to identify the important risk factors, since usually only a few
covariates relate to the response and including non-important variables lessens estimation efficiency and impedes
inference. In addition, not only do these types of studies have high dimensional genetic data, recent research has



found that genetic data interacts with phenotype variables. For example, Taylor et al. [31] shows that the genetic
effects of hypertension are altered under phenotype factors such as BMI.

A motivating example of this paper to exemplify this complexity focuses on identifying factors related to
diabetes status, a correlated discrete response, from the offspring cohort of the longitudinal Framingham data.
Diabetes affects millions of people worldwide, and identifying genetic and phenotype factors that relate to diabetes
can help inform preventative measures and further uncover biologic measures of diabetes [10]. In particular,
one research question of interest is to determine which SNPs in high dimensions and phenotype factors relate
to diabetes status among participants over time. While a traditional approach to this problem employs a linear
model, due to the complexity of gene expression and interactions with phenotype factors, inflexible models with
parametric assumptions may not account for the potential nonlinearity and synergy between genetic and phenotype
data in high dimensional longitudinal data. To demonstrate, Figure 1 shows a clear nonlinear relationship under
our proposed model between diabetes and the combination of SNPs and phenotype factors in the Framingham
data.

To balance flexibility for accurate estimation and interpretability for this high dimensional set of risk factors,
we consider a flexible semiparametric approach for repeated observations. Specifically, we adopt generalized
partially linear single-index models (GPLSIM) [4] for longitudinal data in ultra-high dimension. Generalized
partially linear single-index models achieve dimension reduction by reducing the high-dimensional predictors to
a univariate index within a flexible function. Moreover, single-index models can capture some interactions among
covariates as opposed to additive models. This is advantageous since SNPs and phenotypic risk factors do not
relate to disease in isolation: the compound impact of the genotype-phenotype interaction has been shown to
outperform the impact of using the conventional risk factors in isolation (e.g., Franks [10], Taylor et al. [31]).

Moreover, diabetes status, the outcome of interest measured during multiple waves of the Framingham data, is
a correlated discrete response. This poses a challenge as the full joint likelihood can be intractable for correlated
discrete data. To tackle this difficulty, we employ the penalized quadratic inference function (QIF) to account
for within-subject correlation, perform model selection, and seek efficient estimation for diverging and potentially
ultra-high dimensional longitudinal data. Previous research employing penalized generalized estimating equations
(GEE) for diverging and ultra-high dimensional longitudinal data for linear and semiparametric models includes
Wang et al. [37] and Green et al. [12]. However, generalized estimating equations are known to be less efficient
and overfit the model compared to the quadratic inference function approach when the working correlation matrix
is misspecified (e.g., Qu et al. [27],Cho and Qu [5]). In addition, the quadratic inference function is applicable in
a variety of model setups and shows promising results such as in Qu and Li [26], Wang et al. [38], and Wang et al.
[36].

Due to the many advantages of the quadratic inference function, a handful of works have proposed research
employing partially linear single-index models using the quadratic inference function for longitudinal data (e.g.,
Bai et al. [2] and Lai et al. [18]). However, these works assume the dimension of both the single-index and partially
linear covariates is fixed. Also in fixed finite dimension, Ma et al. [21] and Li et al. [19] incorporated variable
selection for the partially linear single-index model employing the quadratic inference function for continuous
longitudinal responses with the identity link function. In these studies, the real-data applications considered a
fixed low-to-moderate dimensional set up: the application in Ma et al. [21] included a total of 11 covariates, and
the application in Li et al. [19] included 13 covariates. In contrast, the Framingham data analyzed using our
approach has 878 participants but involves over 50,000 SNP covariates and phenotype variables even within the
nonparametric portion.

As opposed to the previous works, our approach allows the number of covariates in both the nonparametric
and linear components of the generalized partially linear single-index model to diverge and even in ultra-high
dimension. We also allow the number of important covariates to diverge. This is especially pertinent for our moti-
vating example, since there are more than 50,000 genetic SNP variables. In particular, allowing flexible modeling
and determining the sparse set of important covariates can lead to more accurate estimation. However, as a result
of incorporating diverging covariates, we navigate additional challenges in both computation and theory when
we allow ultra-high dimensional data within the nonlinear, unknown, flexible function with potentially diverging
support of the single index. We establish asymptotic theory for ultra-dimensional covariates for model selection
and estimation including the oracle property, which is much more challenging to establish than fixed-dimensional
theory. In addition, while there are many previous approaches for estimating the coefficients of the generalized
partially linear single-index model, efficient estimation becomes an even more challenging task when introduc-
ing ultra-high dimensional correlated data. This is because of the potentially high dimensional covariates in a
nonlinear unknown function estimated nonparametrically together with the non-convex smoothly clipped absolute
deviation (SCAD) penalty function as in Fan and Li [7], all within a longitudinal framework. Therefore, to select
the sparse set of important covariates and to estimate the corresponding coefficients, we provide a computation-
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ally efficient iterative algorithm. This approach implements strategic approximations to reduce the computational
burden and increase the effectiveness of the algorithm even for discrete correlated responses.

2. Quadratic Inference Function for Semiparametric Longitudinal Data Analysis

2.1. Model

For each subject i with i = 1, . . . , n, assume correlation among its observations over time t = 1, . . . ,Ti,
but independence from other subjects. We observe, for subject i, a correlated multivariate response vector Yi =

(Yi1, . . . ,Yit, . . . ,YiTi ) over repeated measurements over time. We also observe at each time t, the pn×1 dimensional
single-index covariate vector Xit = (Xit,1, . . . , Xit,pn )T and the qn × 1 dimensional linear covariate vector Zit =

(Zit,1, . . . ,Zit,qn )T. Notably, we allow both the number of single-index and partially linear covariates, pn and qn, to
diverge and potentially be in the exponential order. Also, the number of observations Ti can be different for each
subject i for imbalanced observations.

We consider generalized partially linear single-index models for longitudinal data in ultra-high dimension to
allow flexibility while avoiding the curse-of-dimensionality, that is,

E(Yit |Xit,Zit) = µit = g−1(η(XT
itβ0) + ZT

itγ0), i = 1, . . . , n; t = 1, . . . ,Ti. (1)

Here η(·) is an unknown flexible function estimated non-parametrically; and g(·) is a link function of the exponen-
tial family. The coefficient vector for the single-index covariates is β0 = (β01, . . . , β0pn )T and the coefficient vector
for the linear covariates is γ0 with γ0 = (γ01, . . . , γ0qn )T. We assume a sparse set of important covariates, which is
common in modern statistics literature [14]. In particular, there are a nonzero subset of psn coefficients from the
total pn coefficients and a subset of qsn nonzero coefficients from the total qn linear coefficients, where the rest of
the coefficients are zero. For model identifiability, we assume

∥∥∥β0

∥∥∥ = 1 with the first component positive [40].
We estimate the flexible univariate function of the conditional mean η(·) non-parametrically using polynomial

splines. We first assume the support of the single-index XT
itβ0 is [a, b].We note that the length of this support can

be diverging due to the potentially ultra-high dimensional covariates, thus practically, we use the support of XT
itβ

based on a given β. We then divide this support based on H′ interior knots to create subintervals [ck, ck+1), where
k ∈ {0, · · · ,H′} is determined by the partition, a = c0 < c1 < · · · < cH′ < cH′+1 = b. Given we approximate η(·)
with a degree s ≥ 2 polynomial over each interval, a polynomial spline of order s is a s − 1 degree polynomial on
each interval and globally s−2 times differentiable [29]. We consider the nonparametric estimation of the unknown
flexible function η(·) with the single-index uit = XT

itβ0 as a linear combination of B-spline bases η(uit) ≈ GT(uit)θ,
and θ = (θ1, . . . , θH)T are the basis coefficients of size H ≡ Hn = 1 + s + H′. Accordingly, since η(XT

itβ) is
estimated by GT(XT

itβ)θ, the conditional mean µit = g−1(η(XT
itβ0)+ZT

itγ0) now becomes g−1(GT(XT
itβ0)θ0 +ZT

itγ0).
Therefore, in the rest of this paper, we focus on estimating the column coefficient vector α0 = (θ0 β0 γ0), the
spline, single-index, and the partial linear coefficients, respectively.

2.2. Quadratic Inference Function and Estimation

To account for the correlation within a subject’s observations in longitudinal data, one may use the quadratic
inference function (QIF) approach to estimate the spline basis, single-index, and partial linear coefficient vector, α,
for the given covariates. The quadratic inference function from Qu et al. [27] replaces the inverse of the working
correlation matrix with a linear combination of basis matrices, that is, R−1 ≈ a1M1+· · ·+amMm.Here M1, . . . ,Mm

are predetermined, known symmetric matrices and a = (a1, . . . , am)T are constant coefficients. For most of the
common correlation structures, there are available linear combinations of basis matrices to approximate R−1 as
further discussed in Section 5.2.

To estimate α, Qu et al. [27] extend generalized estimating equations from Zeger and Liang [42] by adopting
the generalized method of moments estimator from Hansen [13] to minimize the following quadratic inference
function

Qn(α) = gT
n W−1

n gn, (2)

where the extended score vector is

gn =
1
n

∑
i

gi(α) =
1
n


∑

i VT
i (α)Ai(α)1/2M1Ai(α)−1/2(Yi − µi(α))∑

i VT
i (α)Ai(α)1/2M2Ai(α)−1/2(Yi − µi(α))

· · ·∑
i VT

i (α)Ai(α)1/2MmAi(α)−1/2(Yi − µi(α))

 ,
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and Wn =
1
n
∑

i gi(α)gi(α)T. The resulting estimates are determined as α̂ = arg minα Qn(α), and Qn(α) is known
as the quadratic inference function [27]. For gn in equation (2), we introduce matrix notation for subject i, where
Yi denotes the Ti × 1 response vector, and µi(α) = g−1(G(Xiβ)θ+Ziγ) is the spline approximated marginal mean,
where Xi is the Ti×pn dimensional single-index covariate matrix, G is the corresponding Ti×H spline basis, and Zi

is the Ti×qn dimensional linear covariate matrix. Further, Ai(α) = diag{σ2
i1(α), . . . , σ2

iTi
(α)} is a diagonal matrix of

the variance of Yi. Hereσ2
it(α) = ϕµ̇(hit) is the spline approximated marginal variance per subject i and observation

t, where the systematic component hit = GT(XT
itβ)θ + ZT

itγ, µ̇(·) is the first derivative with respect to hit, and the
scaling constant ϕ = 1 as in Wang et al. [38]. Vi(α) is defined as Vi(α) =

(
G(Xiβ), diag(Ġ(Xiβ)θ)XiJ(β),Zi

)
,

where Ġ(·) is the first derivative of the spline basis. We define the Jacobian matrix to be J(β) = ∂β/∂β(−1) =

((−β(−1)/(1−∥β(−1)
∥2)1/2)T, I(p−1)×(p−1))T, where we reparameterize β to be a function of β(−1) = (β2, . . . ,βp) using

the “delete-one-component” method for identifiability as in Yu et al. [41] and Yu and Ruppert [40].
Notably, the quadratic inference function does not need to estimate the coefficients a = (a1, . . . , am)T. This

may be especially beneficial in a semiparametric high dimensional setting with likely even more nuisance param-
eters than a moderate dimensional setting [5, 36]. Moreover, Qu et al. [27] show the resulting estimators from
minimizing this quadratic inference function are the most efficient estimators given the same class of estimating
functions, which includes generalized estimating equations. This is advantageous since mis-specified working
correlation structures may cause efficiency loss, yet the true correlation structure is not often known in practice.
In addition, the QIF only requires the first two moments of the response distribution alleviating the difficulty of
specifying the full joint likelihood for correlated discrete responses [27].

3. Penalized Quadratic Inference Function for Ultra-high Dimensional Data

Variable selection is an essential task, since over selecting variables can negatively impact estimation efficiency
and inference for a sparse set of important variables. Nevertheless, identifying a sparse set of important covariates
in high dimensions is difficult [8]. In our motivating example there are more than 50,000 SNPs and the correlated
discrete response creates a further challenge to specify the joint likelihood. Thus, for concurrent variable selection
and estimation with diverging and even potentially ultra-high dimensional covariates along with correlated discrete
responses, we adopt the penalized quadratic inference function for the generalized partially linear single-index
model in (1). We define our penalized quadratic inference function to minimize

QP(α) = Qn(α) +
pn∑
j=1

qλp (|β j|) +
qn∑

k=1

qλq (|γk |). (3)

Here Qn(α) refers to the QIF equation (2), qλp (|β j|) with j ∈ {1, . . . , pn} is the penalty function for each single-
index coefficient with corresponding tuning parameter λp. Similarly, qλq (|γk |) with k ∈ {1, . . . , qn} is the penalty
function for each linear coefficient with corresponding tuning parameter λq.

While other penalty functions can be used, we implement the smoothly clipped absolute deviation (SCAD)
penalty. The first derivative of the SCAD penalty function is defined as q̇λ(ζ) = λ{I(ζ ≤ λ) + (aλ−ζ)+

(a−1)λ I(ζ > λ)}, for
qλ(0) = 0 and a > 2 for a given regularization parameter λ. As suggested in Fan and Li [7], we set a = 3.7.

4. Asymptotic Properties

In our proposed semiparametric approach for longitudinal data, the total number of covariates can be ultra-high
dimensional in both the nonparametric and partially linear portions. Additionally, the true important covariates,
psn and qsn, can be diverging. Especially for longitudinal data, few existing approaches incorporate diverging or
even ultra-high dimensional covariates with nonlinearity for discrete responses. In this challenging setting, we
establish important theoretical properties for the estimators of both the partially linear and, more importantly, the
nonparametric single-index components, not only in moderately high dimension but even in ultra-high dimension.

We first establish asymptotic theory, namely, convergence rate and asymptotic normality, in the oracle case
(i.e., when the exact true covariates are given ahead of time). In this case, we use subscript (s) to denote the oracle.
That is, we let X(s)i be the true Ti × psn dimensional single-index covariate matrix, and Z(s)i be the true Ti × qsn

dimensional linear covariate matrix. The true non-zero psn-dimensional single-index parameter vector is β0(s) =

{β01, . . . , β0psn }
T, and the true non-zero qsn-dimensional partially linear vector is γ0(s) = {γ01, . . . , γ0qsn }

T. The true
non-zero spline parameters corresponding to the single-index X(s)iβ0(s) are θ0(s). Then for the oracle estimators,
we let α̂(s) refer to the oracle estimator for the true important parameters α0(s) = (θ0(s) β0(s) γ0(s)), and ζ̂(s) refer
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to the estimate for ζ0(s) =
(
β(−1)

0(s) γ0(s)

)
. Also, we let V0(s)i =

(
G

(
X(s)iβ0(s)

)
, diag

{
η̇
(
X(s)iβ0(s)

)}
X(s)iJ

(
β0(s)

)
,Z(s)i

)
with J(β0(s)) = ∂β0(s)/∂β

(−1)
0(s) , and we define the true conditional mean of the response as µ0(s)i = g−1(η(X(s)iβ0(s))+

Z(s)iγ0(s)).
We use ḟ , f̈ to denote the first and second derivative of functions. In the theoretical study, we assume that

Ti ≡ T for simplicity, and we assume T is fixed. For two T -dimensional vectors a and b, a ⊙ b denotes the
Hadamard product taken component-wise resulting in another T -dimensional vector. For a matrix A with T
rows, A ⊙ a is the matrix of the same size as A resulting from applying the Hadamard product to each column
of A. We assume in (A2) below that η is smooth. Under that assumption, there exists a vector θ0 such that
∥G(·)θ0 − η(·)∥∞ ≤ CH−d

n .
We rely on the following assumptions.
(A1) sup1≤i≤n,1≤t≤T

∥∥∥X(s)it
∥∥∥ = Op

(√
psn

)
, sup1≤i≤n,1≤t≤T

∥∥∥Z(s)it
∥∥∥ = Op

(√
qsn

)
,

and (Yi,Xi,Zi) are i.i.d.
(A2) η ∈ Hd(M) for some d ≥ 2 and a constant M > 0, where Hd contains all functions η such that∣∣∣η(d1)(x) − η(d1)(y)

∣∣∣ ≤ M|x−y|d−d1 , d1 is the largest integer strictly smaller than d and η(d1) is the d1-th order derivative
of η. We also assume η is a bounded function.

(A3) E
[∥∥∥Yi − µ0(s)i

∥∥∥2+δ
]
< ∞ for some δ > 0.

(A4) There exists positive constants c1 and c2 such that c1 ≤ λmin

(
n−1 ∑

i VT
0(s)iV0(s)i

)
≤

λmax

(
n−1 ∑

i VT
0(s)iV0(s)i

)
≤ c2, where λmin and λmax denote the smallest and largest eigenvalues of a matrix,

respectively.
(A5) On the set

{
α(s) :

∥∥∥α(s) − α0(s)
∥∥∥ ≤ Crn

}
, where C is a positive constant, µ̇i(α), is uniformly bounded away

from 0 and∞, and µ̈i
(
α0(s)

)
is uniformly bounded.

(A6) M1 = I,M2, . . . ,Mm are linear independent non-negative definition matrices with bounded eigenvalues.
Further, for use in the proof of asymptotic normality, we define the following projection. LetMt =

{
g : Eg2

(
XT

itβ0

)
< ∞

}
.

For any random vector a ∈ RT that is a function of (Xi,Zi) ,we define EM[a] = g
(
Xiβ0

)
=

(
g1

(
XT

i1β0

)
, . . . , gT

(
XT

iTβ0

))T
,

where g = (g1, . . . , gT )T is the minimizer of

E
[(

a − g
(
Xiβ0

))T
Ω

(
a − g

(
Xiβ0

))]
(4)

over g j ∈ M j, j = 1, . . . ,T, where

Ω = Fi

(
E

[
FT

i RFi

])−1
FT

i

Fi =
(
A1/2

0i M1A1/2
0i V0i, . . . ,A1/2

0i MmA1/2
0i V0i

)
,R = A−1/2

0i E
[
ϵiϵ

T
i

]
A−1/2

0i , where R is the true correlation matrix of
the error term.

Interpreting Ω as a weight matrix (in the non-longitudinal case it is just a 1 × 1 weight), the above can indeed
be regarded as a projection. Using projections in the proof of asymptotic normality in the parametric part is an
important technique in various semiparametric models [43]. This definition of projection can be extended to the
case when a is a random matrix with T columns such that the projection is obtained row by row.

Using the defined projection, we write EM
[
Z(s)i

]
=

{
ft j

(
X(s)iβ0(s)

)}
1≤t≤T,1≤ j≤qsn

and EM
[
diag

(
η̇
(
Xiβ0

))
Xi

]
={

mt j
(
Xiβ0

)}
1≤t≤T,1≤ j≤psn

. Define

UT
0(s)i =

 JT
(
β0(s)

)
XT

(s)i diag
(
η̇
(
X(s)iβ0(s)

))
− EM

[
JT

(
β0(s)

)
XT

(s)i diag
(
η̇
(
X(s)iβ0(s)

))]
ZT

(s)i − EM
[
ZT

(s)i

] 
(A7) ft j,mt j ∈ H

d′ for some d′ ≥ 1.
(A8) There exist positive constants c3 and c4 such that c3 ≤ λmin

(
n−1 ∑

i UT
0(s)iU0(s)i

)
≤

λmax

(
n−1 ∑

i UT
0(s)iU0(s)i

)
≤ c4.

(A9) ϵi is a sub-Gaussian random vector.

Theorem 1. (Convergence rate of oracle estimator.) Under assumptions (A1)-(A6) and that(
H3

n + H2
n psn + qsn

)
r2

n → 0, we have ∥∥∥α̂(s) − α0(s)
∥∥∥ = Op (rn) ,

where rn =
√

(Hn + psn + qsn) /n + H−d
n .
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Theorem 2. (Asymptotic normality of oracle estimator.) Under assumptions (A1)-(A8) and that
n
(
H3

n + H2
n psn + qsn

)1/2
r3

n → 0, then for any unit vector a ∈ Rpsn+qsn−1,

√
naTΣ

−1/2
(s)

(̂
ζ(s) − ζ0(s)

) d
→ N(0, 1),

where Σ(s) = E
[
UT

0(s)F0(s)

] (
E

[
FT

0(s)RF0(s)

])−1
E

[
FT

0(s)U0(s)

]
.

Next, we establish asymptotic properties when the single-index covariates and the partially linear covariates
are ultra-high dimensional for our semiparametric penalized quadratic inference function estimators.

Theorem 3. (Asymptotic normality of PQIF estimator.) Under the same assumptions for Theorem 2 and (A9)

and
(√

(H3
n+H2

n psn+qsn)logpn

n +
√

Hn + psn + qsn

)
rn << λp << min j≤psn

∣∣∣β0 j

∣∣∣ , √Hn + psn + qsn

(
1 +

√
logqn

n

)
rn <<

λq << min j≤qsn

∣∣∣γ0 j

∣∣∣ , there is an rn-consistent local minimizer α̂ = (̂θ, β̂, γ̂) such that for any unit vector a,

(i)
√

naTΣ
−1/2
(s)

(̂
ζ(s) − ζ0(s)

) d
→ N(0, 1),

where Σ(s) = E
[
UT

0(s)F0(s)

] (
E

[
FT

0(s)RF0(s)

])−1
E

[
FT

0(s)U0(s)

]
.

(ii) β̂psn+1 = · · · = β̂pn = γ̂qsn+1 = · · · = γ̂qn = 0 with probability approaching one.

One key contribution we make is to establish the above challenging theoretical properties for ultra-high dimen-
sional correlated discrete response data. Here we allow not only ultra-high dimensional partially linear covariates
but importantly also the single-index covariates within the nonlinear flexible unknown function to be ultra-high
dimensional. We select important variables that are potentially diverging in the generalized partially linear single-
index model framework with PQIF functions. We relegate detailed technical proofs along with four lemmas to
Section 9. We hope similar techniques can be adopted for other highly nonlinear ultra-high dimensional modeling.

5. Algorithm and Detailed Implementation

5.1. Algorithm

Estimation of the spline, single-index, and partial linear coefficients of penalized quadratic inference function
(3) involves computational challenges in high dimensions, including the non-convex penalty function and the po-
tential ultra-high dimensional covariates in both the nonparametric and linear portions of the generalized partially
linear single-index model. We avoid the prohibitive computational burden of estimating all parameters in one step
by implementing an iterative algorithm. Moreover, we apply two strategic approximations: a linear approximation
of the unknown flexible function and a local quadratic approximation of the non-convex SCAD penalty.

We first focus on easing the computational burden of the potentially ultra-high dimensional covariates em-
bedded inside the likely nonlinear, unknown function estimated nonparametrically. This nonlinear optimization
over a high-dimensional space becomes a computationally demanding task. To alleviate this, we invoke a linear
approximation of η(·) to convert this penalized nonlinear problem into a penalized linear problem. Then we can
use existing linear algorithms, which are more computationally advantageous than nonlinear estimation especially
in high dimensions. Specifically, we apply the first order Taylor series approximation of η(Xiβ) at the point Xiβ0
as η(Xiβ0) � η(Xiβ0) + diag(η̇(Xiβ0))Xi(β − β0), where η(·) is the first derivative of the function η̇(·). Notably,
the parameters to be estimated β are now outside of the unknown, flexible function. We can now use the linear
penalized quadratic inference function method as in Cho and Qu [5] to estimate the parameters.

Still, even though the problem is now linear, minimization of the linear penalized quadratic inference function
is difficult due to the non-convex SCAD penalty. Following Cho and Qu [5], we approximate the linear penalized
quadratic inference function by implementing a local quadratic approximation of the SCAD penalty and then
minimize this approximated quadratic function using the Newton-Rhapson algorithm. Specifically, on iteration
k of the iterative algorithm, we let the column coefficient vector ζ(k) = (β(k) γ(k)). Then as in Fan and Li [7],
the local quadratic approximation of the SCAD penalty function for iteration k and coefficient ζ(k)

j is qλ(|ζ j|) �

qλ(|ζ
(k)
j |) +

1
2

q̇λ(|ζ
(k)
j |)

|ζ(k)
j |

(ζ2
j − ζ

(k)2
j ) with ζ j ≈ ζ

(k)
j and ζ(k)

j , 0. See Cho and Qu [5] for the full estimation algorithm for

the linear penalized quadratic inference function problem.
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Altogether, our two-step iterative algorithm consists of, in step one, estimating the spline coefficients θ via a
quadratic inference function in conjunction with a polynomial B-spline basis. In this step, the single-index and
linear coefficient estimates β̂, γ̂ are given from the previous iteration or as initial values during the first iteration
of the algorithm. In the second step, given the estimated spline coefficients θ̂, we estimate the linear and single-
index coefficients β,γ via the linear approximation of η(·), which converts the nonlinear optimization to a linear
penalized quadratic inference function method from Cho and Qu [5]. In this step, the conditional mean with η(·)
estimated by polynomial splines g−1(G(Xiβ)θ̂+Ziγ) becomes g−1(G(Xiβ̂)θ̂+diag(Ġ(Xiβ̂)θ̂)Xi(β− β̂)+Ziγ) upon
implementation of the linear approximation of η(Xiβ) at the point Xiβ̂.We continue this process of first estimating
the spline coefficients and then estimating the linear and single-index coefficients until convergence.

A detailed description of the iterative algorithm is the following:

Step 0: Initialize ζ̂
(0)
=

 β̂(0)

γ̂(0)

 . See Section 5.2 for details on obtaining initial values under various scenarios.

Step 1: Given ζ̂
(k−1)

=

 β̂(k−1)

γ̂(k−1)

, estimate the spline coefficients, θ̂
(k−1)

, by minimizing the quadratic inference

function gT
n W−1

n gn, where gn =
1
n
∑

i gi(θ, β̂
(k−1)
, γ̂(k−1)).

Step 2: Given the estimated spline coefficients θ̂
(k−1)

, the kth penalized estimator of ζ̂
(k)
= (β̂

(k)
γ̂(k)) is determined

by minimizing the penalized quadratic inference function

Qn(θ̂
(k−1)
,β,γ) +

pn∑
j=1

qλp (|β j|) +
qn∑

k=1

qλq (|γk |), (5)

where Qn(θ̂
(k−1)
,β,γ) = gT

n W−1
n gn and gn =

1
n
∑

i gi(θ̂
(k−1)
,β,γ). We also assume the identifiability constraints

||β|| = 1 and β1 > 0.
Using the approach from Cho and Qu [5], we estimate the single-index and partially linear parameters β,γ

by taking a quadratic approximation of the penalized quadratic inference function with the SCAD penalty and
invoking the Newton-Rhapson algorithm. See Cho and Qu [5] for further implementation details. We then repeat
steps 1 and 2 until convergence. In practice, we observe that the algorithm converges in around 3 steps.

5.2. Practical Implementation Information for Algorithm

In this section, we describe the practical implementation aspects that contribute to the performance of our
approach and give suggestions for desirable performance. We must decide on an appropriate linear combination
of basis matrices to use for the quadratic inference function, the degree, number, and placement of knots for the
B-spline basis for univariate smoothing, and the penalty parameter for variable selection. Further implementation
decisions include initial value determination and screening method selection to prohibit extensive computational
burden when incorporating ultra-high dimensional covariates. We provide additional studies in the Web Appendix.

Choice of Basis Matrices for Quadratic Inference Function
To approximate the inverse of the working correlation structure for the quadratic inference function, one must
select a linear combination of basis matrices Mi in (2) and (3). As noted in Qu et al. [27], if the correlation
structure is exchangeable then R−1 can be approximated by a1I + a2M2, where M2 has 1 on the off-diagonal and
0s on the diagonal. Here a1 = −(m − 2)ρ + 1/l1 and a2 = ρ/l1 with l1 = (m − 1)ρ2 − (n − 2)ρ − 1. For the
AR(1) case, R−1 can be approximated by a1I + a2M2 + a3M3, where M2 has 0 everywhere except the two main
off-diagonals have 1s, and M3 has 0 everywhere except at (1, 1) and (T,T ), which are 1s where T is the largest
time point. a1 = (1 + ρ2)/l2, a2 = −ρ/l2, and a3 = −ρ

2/l2 with l2 = 1 − ρ2. When no previous information exists
about the possible correlation structure, one may implement the approach from Zhou and Qu [44] to consistently
select the correlation structure by employing informative basis matrices in a sufficient class of the true structure.
More information on further working correlation structures can be found in [26, 27, 44].

Initial Values and Screening
In ultra-high dimensions, the computational time of most approaches tends to be prohibitive for practical usage
[8]. For this reason, screening is commonly used in relevant literature to rapidly reduce the covariate dimension
in practice (e.g., Cai et al. [3] and Fang et al. [9]). We echo Fan and Lv [8] and incorporate sure independence
screening to first efficiently reduce dimensionality to benefit step 2 of our iterative algorithm: the linear penalized
quadratic inference function.

On the other hand, in moderately high dimensions, the estimates from the linear penalized quadratic inference
function can be obtained in a satisfactory amount of time for practical usage without implementing a screening ap-
proach. In the relevant literature, initial values with good properties are often used in moderately high dimensions.
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For example, Wang et al. [35] use linear GEE initials. One may also use sure independence screening estimates at
the original dimension as initial values [8]. For our approach in moderately high dimensions, we may use linear
quadratic inference function estimates as initial values.

Tuning Parameters for Penalization
As with many optimization problems, tuning parameter selection is vital for desirable variable selection perfor-
mance. One must find a suitable value for the tuning parameter of the penalty function λp for the single-index
parameters and λq for the linear parameters of the model. Given that the role of the quadratic inference function
is analogous to negative twice the log likelihood, we can use the high dimensional Bayesian information criterion
(HBIC) for tuning parameter selection as in Wang et al. [34]. The model selection criteria is

HBIC(λp, λq) = Qn(θ̂, β̂λp
, γ̂λq

) + dλ
log(n)

2n
Cn, (6)

where dλ is the number of important nonzero coefficients from both the single-index and partially linear portions
of the fitted model. Cn is considered as log(log(pn + qn)) and is based on empirical evidence as in the literature
Wang et al. [34]. We find the minimum HBIC using grid search over separate λp and λq values, which provides
less restrictions in modeling.

Spline Smoothing Tuning Parameters
For the spline basis, one must select the number, degree, and placement of knots. Selection criteria for the number
of interior knots for the B-spline basis is based on a variety of approaches. As explained in Ma et al. [21],
the number of knots can be chosen by a BIC type criteria focusing on consistency or AIC and cross-validation
approaches when efficiency is of interest [15]. In Ruppert and Carroll [28] and Yu and Ruppert [40], the number
of knots implemented depends on the characteristics and shape of the function to be estimated. In particular,
monotonicity and discontinuity dictate the number of knots that are needed in an empirical analysis.

Placement of knots is usually based on equally spaced knots or knot placement at the quantiles of the support of
the estimated single-index. We note that during the iterative algorithm the estimated index values and consequently
the knot placement may change in practice. Further, for best performance, a knot must be near any discontinuities.
We find equally spaced knots with 2 interior knots perform well in our simulation studies. Huang et al. [16] claim
that when the number of knots does not greatly influence performance, one can fix the amount of knots. Regarding
the choice of degree, in practice, usually quadratic and cubic splines are implemented [21, 41].

6. Simulation Studies

We demonstrate the estimation and variable selection performance of our generalized partially linear single-
index model using the penalized quadratic inference function through simulation studies. We mainly focus our
investigation on a correlated binary response example in very high dimension. We also examine our approach un-
der imbalanced data and a complex correlation structure. We present additional settings and a continuous response
example in the Web Appendix. For both the single-index and linear covariates, “Correct%” is the percentage of
simulation replications that select only the relevant variables, “TN” represents the true negatives, the number of
true zero coefficients that the model sets to zero, and “FN” represents the false negatives, the number of true
nonzero coefficients that are set falsely to zero. For the estimation results, “MSEp” is the average mean squared
error of the single-index coefficient estimates

∥∥∥β̂ − β0

∥∥∥2
and “MSEq” is the same for the partial linear coefficients∥∥∥γ̂ − γ0

∥∥∥2
.

Binary Response Example.
We consider the correlated binary responses from the marginal mean

log
(

pit

1 − pit

)
= sin

((XT
itβ − a)π)
b − a

+ ZT
itγ.

There are n = 400 subjects with Ti = T = 10 time points for all subjects, and pn + qn = 500 and pn + qn = 5000
with pn = qn. The coefficient vector is β0 = (1, 1, 1, 0, . . . , 0)T/

√
3 and γ0 = (1, 1, 1, 0, . . . , 0)T, and a and b are

constants equal to
√

3/2−1.645/
√

12 and
√

3/2+1.645/
√

12 respectively. The covariates Xit are sampled from an
independent uniform distribution with minimum at 0 and maximum at 0.5, and the covariates Zit are sampled from
an independent normal distribution with mean at 0 and standard deviation of 0.5. We use the method described
in Macke et al. [22] to simulate correlated binary data with exchangeable correlation structure with ρ = 0.2. We
evaluate the performance using independence, AR(1), and exchangeable working correlation matrices.
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Table 1 reports the estimation and variable selection results, showing that our GPLSIM PQIF model selects
the true important variables with a high percentage over 200 simulation replications. On average, the model also
correctly accounts for the number of true negatives of the covariates. In particular, when pn + qn = 500, the
number of true negatives is very close to the true amount of 247 for the single-index covariates, and the number
of true negatives is close to the true amount of 247 for the linear covariates in all scenarios. Similarly, in the
pn + qn = 5000 case, the number of true negatives is close to the true amount of 2497 for the single-index case,
and the number of true negatives is also close to the true amount of 2497 for the linear covariates. Moreover, the
number of true important single-index or linear variables under selected is low, since the number of false negatives
in the pn + qn = 500 case is 0, and it is below 5% in all instances of the pn + qn = 5000 case. Here the model
selection performance under various correlation structures is quite similar. However, the performance is better in
almost all cases under the true exchangeable correlation structure.

In terms of estimation, the MSEs in Table 1 are small for all parameter estimates. Further, Table 2 indicates
that all parameter estimates are close to the true parameter values. As is the case with variable selection for this
example, the parameter estimation performance under various correlation structures is quite similar. However, it
is better in almost all cases under the true exchangeable correlation structure.

Complex Correlation Structure. We further investigate a more complex correlation structure, which is a
mixture of an AR(1) correlation structure and an exchangeable correlation structure with ρ = 0.5 and pn = 250 and
qn = 250. In particular, the correlation structure simulated is Corr(Yit,Yik) = (ρ|t−k|/2 + ρ/2) with t, k = 1, · · · ,T
when t , k; and Corr(Yit,Yik) = 1 when t = k for each subject i. Table 3 indicates that our proposed model,
labeled as “GPLSIM SCAD”, yields good selection results for an underlying complex correlation structure even
when the working correlation matrix is misspecified. This is consistent with similar literature, e.g. Qu et al. [27],
that QIF can yield a consistent estimator under a misspecified working correlation matrix.

We further examine the estimation and variable selection results with a popular LASSO penalty [32] in com-
parison to SCAD penalty. Table 3 indicates when using the LASSO penalty for all correlation structures, the
GPLSIM PQIF model tends to over-select variables that are not important in the single-index portion. In addition,
the parameter estimates for the SCAD penalty are closer to the true parameter values compared to those using
LASSO penalty. This is similarly observed for the linear PQIF model, where for all correlation structures the
LASSO penalty appears to perform worse in two areas: non-important covariates are selected in the single-index
portion and all parameter estimates are farther from the true values.

Unequal Ti per Subject. Next we investigate unequal Ti per subject for imbalanced data. We simulate 400
subjects with 10 observations per subject with pn + qn = 500, and 400 subjects with 5 observations per subject for
pn + qn = 500. The remaining set is the same as in the binary response example with a simulated exchangeable
correlation structure and ρ = 0.5. The results in Table 4 indicate that the estimated parameters are close to the
true parameters. The variable selection results have a high correct percentage, with a range of 97-100% for the
single-index parameters and near 100% for the linear parameters. Our algorithm uses the high-dimensional linear
penalized QIF from Cho and Qu [5] and linear QIF from Qu et al. [27] as a base, thus incorporating imbalanced
data is natural.

7. An Application to Diabetes Analysis

Diabetes is a widespread disease associated with various health complications including but not limited to an
increased risk of stroke and vision loss [33]. Due to the known impact of both phenotype and high dimensional
genotype variables on diabetes [10], identifying important genetic and phenotype risk factors may allow early
diagnosis and more effective treatment. To investigate this relationship between risk factors and diabetes status
using our proposed model, we use the ongoing Framingham Heart Study data [6]. This study is a continuing
longitudinal study of cardiovascular disease, and researchers have also used this data to investigate various diseases
such as diabetes (e.g., Meigs et al. [23]). For more in-depth details on the phenotype and genotype variables we
used, please visit the Framingham study page at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000007.v32.p13.

To investigate factors related to diabetes status, we use a subset of 878 participants among the offspring co-
hort of the Framingham data measured over four exams. To avoid a large gap between exam 1 and exam 2, we
use a subset that covers four waves of exams to ensure the diabetes indicators and diabetes-related quantitative
traits are comparable. According to the Framingham Data dictionary, the participants’ diabetes status variable,
the correlated binary response Yi, is derived by an algorithm considering blood glucose test results, treatment
status, and other information per the protocol of vr diab ex09 1 1002s. We include ten phenotype covariates that
are potentially linked to diabetes from previous research: age, systolic blood pressure (SBP), total cholesterol
(TC), smocking status (SMK), cigarette per day (CPD), body mass index (BMI), weight (WGT), Ventricular rate
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(VENT RT), Triglyceride(TRIG), and HDL cholesterol. We also include high dimensional genetic data from
participants as covariates in our analysis. Participants were genotyped on the Affymetrix 500K creating 500,568
single nucleotide polymorphisms (SNPs). After removing SNPs that are vastly missing or possessing zero vari-
ance, quality control filters yielded 53,722 SNPs for modeling. For computational efficiency, we also follow the
common practice and employ a combined screening method as in [11] and [17].

We apply our proposed generalized partial linear single-index model with PQIF approach to this subset of
Framingham data to investigate the relationship between the longitudinal response between phenotypes and SNPs.
The logit link function is used for the binary response, diabetes status. The only binary phenotype variable is
smoking status, which naturally goes into the partial linear term when fitting the model while the rest of the
phenotype variables and SNPs are embedded in the single-index term. Specifically, for participant i over 4 waves,
log(pit/(1 − pit)) = η(XT

itβ) + Zitγ, where all phenotype and genotype variables except smoking status enter the
single-index term, and smoking status (Zit) enters partially linearly. We find the best penalty parameter using
HBIC, and we use quadratic degree with 3 equally spaced knots. See Section 5.2 for more information on tuning
parameters and setup.

Figure 1 indicates a clear nonlinear relationship between the flexible function and the single-index made up of
genetic and phenotype risk factors that were selected as important using our approach. A linear model is likely to
mis-specify the relationship. For comparison, we also report the linear SCAD penalized quadratic inference func-
tion along with our proposed generalized partially linear single-index model using the SCAD penalized quadratic
inference function. For the linear model, the same covariates are included. We use the BIQIF from Cho and Qu
[5] to determine the best performing penalty parameter for the linear model.

Table 6 reports the 3-fold cross-validation area under the curve (AUC) and the out-of-sample model AUC
with a 70/30 training and testing split of the data. Under the exchangeable structure, our proposed GPLSIM
model clearly outperforms the linear penalized QIF model in terms of higher AUC for both cross validation and
out-of-sample testing. Under the correlation structure of AR(1) and independence, although with less margin,
our proposed partially linear single-index model using penalized QIF still consistently outperforms the linear
penalized QIF model.

Table 6 also reports the number of phenotype variables selected and the number of genotype variables selected
by the model. Under the exchangeable structure, 5 phenotype variables have been selected. They are age, SBP,
WGT, TRIG and HDL. All of them have been identified as risk factors for diabetes in the previous literature and
have been used as key components in predictive models of incidence of diabetes mellitus such as [30] and [20].
Among the large amount of genotype variables, the proposed model selected six SNPs, three of them have been
confirmed by literature: rs4506565, rs10946398 and rs5018648 (Diabetes Genetics Initiative (2007); [1, 24, 25]).

8. Conclusion

In public health, researchers are increasingly conducting large-scale longitudinal studies to investigate the
relationship between disease and genetic and phenotype factors. These studies can provide insight into more
effective treatment and disease prevention strategies. To incorporate correlation with a discrete response and to
account for the complexity and synergy among genetic factors and phenotype variables, we propose an approach
via penalized quadratic inference functions for generalized partially linear single-index models. Specifically, the
quadratic inference functions can yield efficient estimation when the working correlation structure is misspecified,
and the generalized partially linear single-index models are flexible and can incorporate some interactions. We
allow genetics factors that are diverging and even in the exponential order with the number of participants not
only in the linear portion of the model, but importantly also in the nonlinear portion estimated non-parametrically.
We establish theoretical results such as asymptotic normality and the oracle property in ultra-high dimension.
Moreover, we develop an efficient estimation algorithm for computational expediency. We employ our approach
to investigate diabetes status for an ongoing longitudinal public health study with genetics factors in very high
dimensions.
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Table 1: Summary of Variable Selection Results for the Generalized Partially linear Single-Index Model for the Binary Response Example.
The total numbers of covariates are pn + qn = 500 and pn + qn = 5000 with pn = qn calculated over 200 simulations. “Correct%” is the
percentage of times the true important variables are selected over the iterations. “TN” is the average of the true negatives over the iterations,
and “FN” is the average of the false negatives over the iterations. “MSEp” and “MSEq” are the average mean squared errors for the single-
index parameters and partially linear parameters over all simulation iterations.

Single-index Covariates Partially Linear Covariates

Structure Correct% TNs FNs MSEp Correct% TNs FNs MSEq
pn + qn = 500

Independence 86 246.81 0 0.0240 100 247 0 0.0180
AR(1) 92 246.92 0 0.0120 100 247 0 0.0160

Exchangeable 99 246.98 0 0.0080 100 247 0 0.0130
pn + qn = 5000

Independence 80 2496.91 0.12 0.0586 93 2496.93 0 0.0216
AR(1) 79 2496.94 0.15 0.0658 95 2496.95 0 0.0195

Exchangeable 97 2497.00 0.03 0.0179 98 2496.98 0 0.0156

Table 2: Summary of Parameter Estimates for the Generalized Partially linear Single-Index Model for the Binary Response Example. The
total numbers of covariates are pn + qn = 500 and pn + qn = 5000 with pn = qn. The sample mean, bias, and standard error are calculated over
200 simulations for single-index and partially linear parameter estimates.

Independence AR(1) Exchangeable
par. mean bias se mean bias se mean bias se

pn + qn = 500
β1 0.5671 -0.0103 0.0590 0.5739 -0.0035 0.0544 0.5757 -0.0017 0.0484
β2 0.5659 -0.0114 0.0630 0.5731 -0.0042 0.0519 0.577 -0.0004 0.0504
β3 0.5780 0.0006 0.0602 0.5746 -0.0027 0.0557 0.5722 -0.0052 0.0520
γ1 1.0024 0.0024 0.0778 1.0156 0.0156 0.0734 1.0171 0.0171 0.0625
γ2 0.9997 -0.0003 0.0772 1.0123 0.0123 0.0703 1.0168 0.0168 0.0654
γ3 0.9938 -0.0062 0.0812 1.0098 0.0098 0.0709 1.0108 0.0108 0.0659

pn + qn = 5000
β1 0.5855 0.0081 0.0746 0.5626 -0.0148 0.1359 0.5778 0.0005 0.0551
β2 0.5241 -0.0533 0.1694 0.5374 -0.0400 0.1729 0.5556 -0.0217 0.1098
β3 0.5718 -0.0056 0.1216 0.5751 -0.0022 0.1189 0.5831 0.0057 0.0497
γ1 1.0022 0.0022 0.0833 1.0144 0.0144 0.0798 1.0165 0.0165 0.0761
γ2 1.0125 0.0125 0.0786 1.0190 0.0190 0.0717 1.0228 0.0228 0.0625
γ3 1.0017 0.0017 0.0811 1.0052 0.0052 0.0808 1.0091 0.0091 0.0681

Figure 1: Curve Estimates for Real Data Application to Diabetes Analysis. We apply penalized quadratic inference function approach to
generalized partial linear single-index model for longitudinal data in high dimension. Here the response variable of interest is diabetes status,
a binary correlated discrete response, and all continuous phenotype and genotype variables are embedded in the single-index term.
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Table 3: Summary of Estimation and Variable Selection Results for the Generalized Partially linear Single-Index Model for the Binary
Response Example with Complex Correlation with Different Penalties for pn = 250 and qn = 250. The true correlation structure is
Corr(Yit ,Yik) = (ρ|t−k|/2 + ρ/2) with t, k = 1, · · · ,T when t , k, ρ = 0.5, and Corr(Yit ,Yik) = 1 when t = k for each subject i. The
“GPLSIM SCAD” and “GPLSIM LASSO” refer to our proposed generalized partially linear single-index model using the penalized quadratic
inference function with SCAD penalty and LASSO penalty respectively. Similarly, The “Linear PQIF SCAD” and “Linear PQIF LASSO‘
refer to linear penalized quadratic inference function with SCAD penalty and LASSO penalty respectively. The remaining settings are the
same as in the binary response example. “TN” is the average of the true negatives over the iterations, and “FN” is the average of the false
negatives over the iterations. “MSEp” and “MSEq” are the average mean squared errors for the single-index parameters and partially linear
parameters over all simulation iterations.

Single-index Covariates Partially Linear Covariates

Model Structure Correct% TNs FNs MSEp Correct% TNs FNs MSEq
Independence 93 246.93 0 0.0169 100 247 0 0.0143

GPLSIM SCAD AR(1) 88 246.88 0 0.0142 99 246.99 0 0.0106
Exchangeable 96 246.96 0 0.0127 100 247 0 0.0123
Independence 87 246.74 0.13 0.0929 86 246.85 0 0.1298

GPLSIM LASSO AR(1) 79 246.33 0.18 0.1805 100 247 0 0.0976
Exchangeable 89 246.71 0.09 0.0868 99 247 0 0.0840
Independence 8 245 0 0.5370 78 246.85 0 0.0177

Linear PQIF SCAD AR(1) 32 246.10 0.78 0.5488 90 247 0 0.0100
Exchangeable 28 246.41 0.98 0.5246 88 246.80 0 0.0138
Independence 2 246.09 1.37 0.7846 29 245.81 0 0.0652

Linear PQIF LASSO AR(1) 22 245.98 0.42 0.3213 52 246.29 0 0.0784
Exchangeable 55 246.68 0.34 0.2427 50 246.30 0 0.0654

Table 4: Summary of Estimation and Variable Selection Results for the Binary Response Example with Unequal Ti with pn = 250 and
qn = 250. This analysis with unequal numbers of observations per subject Ti has n = n1 + n2 subjects. In particular, n1 = 400 subjects
with T = 10 observations per subject and n2 = 400 subjects with T = 5 observations per subject. The remaining settings are the same as in
the binary response example. “Correct%” is the percentage of times the true important variables are selected over the iterations. “TN” is the
average of the true negatives over the iterations, and “FN” is the average of the false negatives over the iterations.

Single-index Covariates Partially Linear Covariates

Structure Correct% TNs FNs MSEp Correct% TNs FNs MSEq
Independence 97 246.96 0 0.0175 100 247 0 0.0174

AR(1) 100 247 0 0.0089 100 247 0 0.0142
Exchangeable 100 247 0 0.0092 100 247 0 0.0168

Table 5: Summary of Parameter Estimates for the Continuous Response Example. The total numbers of covariates are pn + qn = 5000 with
pn = qn. The sample mean, bias, and standard error are calculated over 200 simulations for the single-index and partially linear parameter
estimates.

Independence AR(1) Exchangeable
par. mean bias se mean bias se mean bias se
β1 0.4440 -0.0032 0.0241 0.4457 -0.0015 0.0194 0.4459 -0.0013 0.0150
β2 0.4499 0.0027 0.0200 0.4516 0.0044 0.0139 0.4492 0.0020 0.0136
β3 0.4474 0.0002 0.0206 0.4478 0.0006 0.0163 0.4482 0.0009 0.0134
β4 0.4458 -0.0014 0.0217 0.4448 -0.0024 0.0177 0.4473 0.0000 0.0155
β5 0.4464 -0.0008 0.0204 0.4445 -0.0027 0.0151 0.4444 -0.0028 0.0144
γ1 0.9944 -0.0056 0.0386 0.9967 -0.0033 0.0283 0.9980 -0.0020 0.0226
γ2 1.0000 0.0000 0.0410 1.0026 0.0026 0.0308 1.0026 0.0026 0.0243
γ3 0.9991 -0.0009 0.0456 1.0007 0.0007 0.0337 1.0049 0.0049 0.0270
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Table 6: Summary of Results for Real Data Application to Diabetes Analysis. “CV AUC” and “OOS AUC” are cross validation model area
under the curve with 3-fold cross validation and out-of-sample model area under the curve using 70/30 training testing split data set. “PQIF-
GPLSIM” refers to our proposed generalized partial linear single-index model using penalized QIF, and “PQIF-linear” refers to the linear
penalized QIF model. The numbers of selected phenotype and genotype variables are reported with full data.

OOS AUC CV AUC
# of phenotype

selected
# of gene
selected

PQIF-GPLSIM Exchangeable 0.809 0.819 5 6
AR(1) 0.801 0.794 6 7

Independence 0.802 0.799 4 9
PQIF-Linear Exchangeable 0.786 0.787 4 7

AR(1) 0.773 0.781 5 7
Independence 0.781 0.783 6 9
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9. Technical Proofs

We provide detailed proofs and supporting lemmas for the asymptotic properties of estimators in ultra-high
dimension for our proposed generalized partially linear single-index model using the penalized quadratic inference
function. In Section 9.1, we first prove Theorem 1, the convergence rate under the oracle setting. In Section 9.2, we
provide the proof of Theorem 2, asymptotic normality, in the oracle setting. In Section 9.3, we prove Theorem 3
which determines asymptotic properties for the penalized quadratic inference function estimator when both the
single-index and linear variables can diverge and even be in ultra-high dimension. In both the oracle and the
ultra-high dimensional settings, the important variables can diverge for both the partially linear portion and the
single-index portion. For simplicity of notation, we drop all n subscript in this section.

9.1. Proof of Convergence Rate for Oracle Estimators
Let Vi(α) =

(
G (Xiβ) , diag

{
Ġ (Xiβ) θ

}
XiJ(β),Zi

)
,V0i =

(
G

(
Xiβ0

)
, diag

{
η̇
(
Xiβ0

)}
XiJ

(
β0

)
,Zi

)
,

Kiℓ(α) = VT
i (α)A1/2

i (α)MℓA−1/2
i (α),K0iℓ = VT

0iA
1/2
0i MℓA−1/2

0i ,Ki(α) =
(
KT

i1(α), . . . ,KT
im(α)

)T
,

and K0i =
(
KT

0i1, . . . ,K
T
0im

)T
. Define gi(α) = Ki(α)

(
Yi − µi(α)

)
, g0i(α) = K0i

(
Yi − µi(α)

)
,

g0i = K0iϵi with ϵi = Yi−µ0i, gn(α) = 1
n
∑

i gi(α), g0n(α) = 1
n
∑

i g0i(α), g0n =
1
n
∑

i g0i,Wn(α) = 1
n
∑

i g0i(α)gT
0i(α),W0n =

1
n
∑

i g0igT
0i, Qn(α) = gn(α)TW−1

n (α)gn(α), and Q0n(α) = g0n(α)TW−1
0n g0n(α).

Let rn =

√
H+ps+qs

n + H−d. To get the convergence rate, we need to show that for L sufficiently large, with
probability approaching one as n→ ∞,

inf
∥α−α0∥=Lrn

Qn(α) − Qn (α0) ≥ Cr2
n. (7)

The above will be implied by (8) and (9) below,

sup
∥α−α0∥≤Crn

|Qn(α) − Q0n(α)| = op

(
r2

n

)
, (8)

and for L sufficiently large,
inf

∥α−α0∥=Lrn

Q0n(α) − Q0n (α0) ≥ CL2r2
n. (9)

As a first step we prove (8).

Qn(α) − Q0n(α)

=gn(α)TW−1
n (α)gn(α) − g0n(α)W−1

0n g0n(α)

=
(
gn(α) − g0n(α)

)T W−1
n (α)gn(α) + g0n(α)T

(
W−1

n (α) −W−1
0n

)
gn(α)

+ g0n(α)TW−1
0n

(
gn(α) − g0n(α)

)
=Op


√

H3 + H2 ps + qs

n
r2

n +

√
H3 + H2 ps + qsr3

n


=op

(
r2

n

)
,

(10)

using (a), (c), (d), and (e) from Lemma 1 results below.
In Step 2, we prove (9).

Q0n(α) − Q0n (α0)

=
(
g0n(α) − g0n (α0)

)T W0n
(
g0n(α) − g0n (α0)

)
+ 2g0n (α0)T W0n

(
g0n(α) − g0n (α0)

)
≥CL2r2

n,

using (a), (b), and (e) from Lemma 1 results below.

Lemma 1. We establish the following properties:

(a) sup
∥α−α0∥≤Crn

∥∥∥g0n(α) − g0n (α0)
∥∥∥ = Op (rn).

(b) inf
∥α−α0∥=Lrn

∥∥∥g0n(α) − g0n (α0)
∥∥∥ ≥ CLrn.
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(c) sup
∥α−α0∥≤Crn

∥∥∥gn(α) − g0n(α)
∥∥∥ = Op

(√
H3+H2 ps+qs

n rn

)
.

(d) sup
∥α−α0∥≤Crn

∥∥∥W−1
n (α) −W−1

0n

∥∥∥ = Op

( √
H3 + H2 ps + qsrn

)
.

(e)
∥∥∥g0n (α0)

∥∥∥ = Op (rn).

Proof of Lemma 1. We first prove (e), where∑
i

K0i
(
Yi − µi (α0)

)
=

∑
i

K0iϵi +
∑

i

K0i
(
µ0i − µi (α0)

)
=Op

( √
n (H + ps + qs) + nH−d

)
= Op (nrn) .

Here we used that for any unit vector a of appropriate dimension,

∥aT
T∑
i

Ki
(
µ0i − µi (α0)

)
∥ ≤

∑
i

∣∣∣aTKiKT
i a

∣∣∣21/2 ∑
i

∥µ0i − µi (α0) ∥2
1/2

= Op

(
nH−d

)
.

For (c), the proof is based on repeated application of Taylor’s expansion, but the diverging dimension makes
it quite messy and therefore hard to keep track of the higher order terms. Let δit = GT

(
XT

itβ0

)
θ0 − η

(
XT

itβ0

)
and

δi = (δi1, . . . , δiT )T. Then employing Taylor’s expansion,

hit(α) − h0it

=GT
(
XT

itβ
)
θ −GT

(
XT

itβ0

)
θ0 + ZT

it (γ − γ0) + δit

=GT
(
XT

itβ0

)
(θ − θ0) + ĠT

(
XT

itβ0

)
θ0XT

it
(
β − β0

)
+ ZT

it (γ − γ0)

+ ĠT
(
XT

itβ
∗
)

(θ − θ0) XT
it
(
β − β0

)
+ G̈T

(
XT

itβ
∗
)
θ0

(
XT

it
(
β − β0

))2
+ δit

=
(
GT

(
XT

itβ0

)
, η̇

(
XT

itβ0

)
XT

it ,Z
T
it

)
(α − α0) + δit + Op

((√
H3 ps + ps

)
r2

n

)
,

where β∗ lies between β0 and β in the following quantities, where superscript ∗ always indicates such values that
arise from Taylor’s expansion, or

hi(α) − h0i =
(
G

(
Xiβ0

)
, η̇

(
Xiβ0

)
Xi,Zi

)
(α − α0) + δi + Op

((√
H3 ps + ps

)
r2

n

)
= Op

( √
H + ps + qsrn

)
.

(11)

We also have ∑
i

∥hi(α) − hi (α0)∥2 = Op

(
nr2

n + nH2 min {H, ps} r4
n

)
.

Similarly, we have by Taylor’s expansion

A1/2
i (α) − A1/2

0i

=
1
2

A−1/2
0i diag

(
µ̈0i

)
diag (hi(α) − h0i) + Op

(
∥hi(α) − h0i∥

2
)

=
1
2

A−1/2
0i diag

(
µ̈0i

)
diag

{(
G

(
Xiβ0

)
, η̇

(
Xiβ0

)
Xi,Zi

)
(α − α0) + δi

}
+ Op

((√
H3 ps + ps

)
r2

n + (H + ps + qs) r2
n

)
,
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∑
i

∥∥∥A1/2
i (α) − A1/2

0i

∥∥∥2

=
∑

i

∥∥∥∥∥1
2

A−1/2
0i diag

(
µ̈0i

)
diag

{(
G

(
Xiβ0

)
, η̇

(
Xiβ0

)
Xi,Zi

)
(α − α0) + δi

}∥∥∥∥∥2

+ Op

(
nH2 min {H, ps} r4

n

)
=Op

(
nr2

n + nH2 min {H, ps} r4
n

)
,

A−1/2
i (α) − A−1/2

0i

= −
1
2

A−3/2
0i diag

(
µ̈0i

)
diag (hi(α) − h0i) + Op

(
∥hi(α) − h0i∥

2
)

= −
1
2

A−3/2
0i diag

(
µ̈0i

)
diag

{(
G

(
Xiβ0

)
, η̇

(
Xiβ0

)
Xi,Zi

)
(α − α0)

}
+ Op

((√
H3 ps + ps

)
r2

n + (H + ps + qs) r2
n

)
,

∑
i

∥∥∥A−1/2
i (α) − A−1/2

0i

∥∥∥2

=Op

(
nr2

n + nH2 min {H, ps} r4
n

)
G (Xiβ) −G

(
Xiβ0

)
=Ġ

(
Xiβ0

)
⊙

(
Xi

(
β − β0

))
+ Op

(
H5/2 psr2

n

)
,

and ∑
i

∥∥∥G (Xiβ) −G
(
Xiβ0

)∥∥∥2

=
∑

i

∥∥∥Ġ
(
Xiβ0

)
⊙

(
Xi

(
β − β0

))∥∥∥2
+ Op

(
nH5 psr4

n

)
=Op

(
nH3r2

n + nH5 psr4
n

)
.

Using the identity

A1B1C1 − A0B0C0
= (A1 − A0) B0C0 + A0 (B1 − B0) C0 + A0B0 (C1 −C0)
+A0 (B1 − B0) (C1 −C0) + (A1 − A0) B0 (C1 −C0) + (A1 − A0) (B1 − B0) C0
+ (A1 − A0) (B1 − B0) (C1 −C0) ,

we have

GT (Xiβ) A1/2
i (α)MℓA−1/2

i (α) −GT (
Xiβ0

)
A1/2

0i MℓA−1/2
0i

=Ġ
(
Xiβ0

)
⊙

(
Xi

(
β − β0

))
A1/2

0i MℓA−1/2
0i

+
1
2

GT (
Xiβ0

)
A−1/2

0i diag
(
µ̈0i

)
diag

{(
G

(
Xiβ0

)
, η̇

(
Xiβ0

)
Xi,Zi

)
(α − α0) + δi

}
MℓA−1/2

0i

−
1
2

GT (
Xiβ0

)
A1/2

0i MℓA−3/2
0i diag

(
µ̈0i

)
diag

{(
G

(
Xiβ0

)
, η̇

(
Xiβ0

)
Xi,Zi

)
(α − α0) + δi

}
+ Op

(√
H3 ps (H + ps + qs)r2

n +
√

H (H + ps + qs) r2
n

)
,

and ∑
i

∥∥∥GT (Xiβ) A1/2
i (α)MℓA−1/2

i (α) −GT (
Xiβ0

)
A1/2

0i MℓA−1/2
0i

∥∥∥2
= Op

(
nH3r2

n

)
.

Using Yi − µi(α) = ϵi +
(
µ0i − µi(α)

)
,µ0i − µi(α) = Op

(√
H + ps + qsrn

)
, and

∑
i

∥∥∥µ0i − µi(α)
∥∥∥2
= Op

(
nr2

n

)
, we
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obtain ∑
i

(
GT (Xiβ) A1/2

i (α)MℓA−1/2
i (α) −GT (

Xiβ0
)

A1/2
0i MℓA−1/2

0i

) (
Yi − µi(α)

)
=

∑
i

(
GT (Xiβ) A1/2

i (α)MℓA−1/2
i (α) −GT (

Xiβ0
)

A1/2
0i MℓA−1/2

0i

) (
ϵi + µ0i − µi(α)

)
=Op

(√
nH3rn

)
.

Other components of gi(α) − g0i(α) can be similarly dealt with. More specifically, we have

JT(β)XT
i diag

(
Ġ (Xiβ) θ

)
− JT (

β0
)

XT
i diag

(
η̇
(
Xiβ0

))
=
∂JT (
β0

)
∂β

(
β − β0

)
XT

i diag
(
η̇
(
Xiβ0

))
+ JT (

β0
)

XT
i diag

(
η̈
(
Xiβ0

)
⊙

(
Xi

(
β − β0

)))
+ JT (

β0
)

XT
i diag

(
Ġ

(
Xiβ0

)
(θ − θ0) + δ̇i

)
+ Op

(√
ps

(
H3 + ps

)
r2

n

)
=Op

((√
ps

(
H3 ps + ps

)
rn

)
,

where δ̇i = Ġ
(
Xiβ0

)
θ0 − η̇

(
Xiβ0

)
.

JT(β)XT
i diag

(
Ġ (Xiβ) θ

)
A1/2

i (α)R−1A−1/2
i (α) − JT (

β0
)

XT
i diag

(
η̇
(
Xiβ0

))
A1/2

0i MℓA−1/2
0i

=
∂JT (
β0

)
∂β

(
β − β0

)
XT

i diag
(
η̇
(
Xiβ0

))
A1/2

0i MℓA−1/2
0i

+ JT (
β0

)
XT

i diag
(
η̈
(
Xiβ0

)
⊙

(
Xi

(
β − β0

)))
A1/2

0i MℓA−1/2
0i

+ JT (
β0

)
XT

i diag
(
Ġ

(
Xiβ0

)
(θ − θ0) + δ̇i

)
A1/2

0i MℓA−1/2
0i

+
1
2

JT (
β0

)
XT

i diag
(
η̇
(
Xiβ0

))
A−1/2

0i diag
(
µ̈0i

)
diag

{(
G

(
Xiβ0

)
, η̇

(
Xiβ0

)
Xi,Zi

)
(α − α0) + δi

}
MℓA−1/2

0i

−
1
2

JT (
β0

)
XT

i diag
(
η̇
(
Xiβ0

))
A1/2

0i MℓA−3/2
0i diag

(
µ̈0i

)
diag

{(
G

(
Xiβ0

)
, η̇

(
Xiβ0

)
Xi,Zi

)
(α − α0) + δi

}
+ Op

(√(
H3 ps + p2

s
)

(H + ps + qs)r2
n

+
√

ps (H + ps + qs) r2
n

)
=Op

(√
H3 ps + p2

srn +
√

ps (H + ps + qs)rn

)
,

and ∑
i

∥∥∥∥JT(β)XT
i diag

(
Ġ (Xiβ) θ

)
A1/2

i (α)R−1A−1/2
i (α) − JT (

β0
)

XT
i diag

(
η̇
(
Xiβ0

))
A1/2

0i MℓA−1/2
0i

∥∥∥∥2

=Op

(
nH2 psr2

n

)
,

which in turn implies, using Yi − µi(α) = ϵi +
(
µ0i − µi(α)

)
,∑

i

(
JT(β)XT

i diag
(
Ġ (Xiβ) θ

)
A1/2

i (α)MℓA−1/2
i (α) − JT (

β0
)

XT
i diag

(
η̇
(
Xiβ0

))
A1/2

0i

MℓA−1/2
0i

) (
Yi − µi(α)

)
= Op

(
nH2 psr2

n

)
.

We can similarly show∑
i

(
ZT

i A1/2
i (α)MℓA−1/2

i (α) − ZT
i A1/2

0i MℓA−1/2
0i

) (
Yi − µi(α)

)
= Op

(
nqsr2

n

)
,
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since
∑

i

∥∥∥ZT
i A1/2

i (α)MℓA−1/2
i (α) − ZT

i A1/2
0i MℓA−1/2

0i

∥∥∥2
= Op

(
nqsr2

n

)
.

Thus, we finally get

sup
∥α−α0∥≤Crn

∥∥∥∥∥∥∥∑i

gi(α) −
∑

i

g0i(α)

∥∥∥∥∥∥∥ = Op

(√
n
(
H3 + H2 ps + qs

)
rn

)
.

To prove (a) and (b), for any unit vector a,

aT
∑

i

(g0i(α) − g0i (α0))

=aT
∑

i

K0i
(
µi (α0) − µi(α)

)
≤

∑
i

∣∣∣aTK0iK0ia
∣∣∣1/2 ∑

i

∥∥∥µi (α0) − µi(α)
∥∥∥2

1/2

= Op (nrn) .

And for the lower bound, we similarly have for a = α0 − α, and ℓ ∈ {1, . . . ,m},

aT
∑

i

(g0iℓ(α) − g0iℓ (α0))

=aT
∑

i

K0iℓ
(
µi (α0) − µi(α)

)
=

∑
i

aTK0iℓ diag
(
µ̇0i

)
V0i (α0 − α)

+
∑

i

aTK0iℓ
(
µi (α0) − µi(α) − diag

(
µ̇0i

)
V0i (α0 − α)

)
=

∑
i

(α0 − α)T VT
0iA

1/2
0i MℓA1/2

0i V0i (α0 − α) + Op

(
nH2 (H + ps) r4

n

)
.

Thus,

∥α − α0∥

∥∥∥∥∥∥∥∑i

(g0iℓ(α) − g0iℓ (α0))

∥∥∥∥∥∥∥
≥

∑
i

(α0 − α)T VT
0iA

1/2
0i MℓA1/2

0i V0i (α0 − α) − Op

(
nH2 (H + ps) r4

n

)
=Cn ∥α − α0∥

2 ,

which implies (b).
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To prove (d), start with

Wn(α) −W0n

=
1
n

∑
i

gi(α)gT
i (α) −

1
n

∑
i

g0igT
0i

=
1
n

∑
i

(gi(α) − g0i) gT
0i +

1
n

∑
i

g0i (gi(α) − g0i)T +
1
n

∑
i

(gi(α) − g0i) (gi(α) − g0i)T

∥∥∥∥∥∥∥∑i

(g0i(α) − g0i) gT
0i

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∑i

K0i
(
µi(α) − µ0i

)
ϵT

i KT
0i

∥∥∥∥∥∥∥
2

=Op

∑
i

∥∥∥KT
0iK0i

(
µi(α) − µ0i

)∥∥∥2


=Op

(
n (H + ps + qs)2 r2

n

)
.∥∥∥∥∥∥∥∑i

(gi(α) − g0i(α)) gT
0i

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥∑i

(Ki(α) −K0i)
(
ϵi + µ0i − µi(α)

)
ϵT

i KT
0i

∥∥∥∥∥∥∥
2

=Op


∥∥∥∥∥∥∥∑i

(Ki(α) −K0i) KT
0i

∥∥∥∥∥∥∥
2

+
∑

i

∥∥∥KT
0i (Ki(α) −K0i)

(
µi(α) − µ0i

)∥∥∥2


=Op

(
n2

(
H3 + H2 ps + qs

)
r2

n

)
,

using that
∑

i ∥Ki(α) −K0i∥
2 = Op

(
n
(
H3 + H2 ps + qs

)
r2

n

)
. Then∑

i

(gi(α) − g0i) (gi(α) − g0i)T

=
∑

i

(
(Ki(α) −K0i)

(
ϵi + µ0i − µi(α)

)
+K0i

(
µ0i − µi(α)

))⊗2

=Op

∑
i

∥Ki(α) −K0i∥
2 +

∑
i

∥Ki(α) −K0i∥
2
∥∥∥µi(α) − µ0i

∥∥∥2
+

∑
i

∥∥∥µi(α) − µ0i

∥∥∥2


=Op

(
n
(
H3 + H2 ps + qs

)
r2

n

)
.

Therefore,

∥Wn(α) −W0n∥ = Op

(
H + ps + qs
√

n
rn +

√
H3 + H2 ps + qsrn +

(
H3 + H2 ps + qs

)
r2

n

)
= Op

(√
H3 + H2 ps + qsrn

)
.
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9.2. Proof of Asymptotic Normality for Oracle Estimators

Let N0i =
(
diag

(
η̇
(
Xiβ0

))
XiJ

(
β0

)
,Zi

)
and define

P = arg min
Q

(N −GQ)T


A1/2

01 M1A1/2
01 V01 · · · A1/2

01 MmA1/2
01 V01

...
...

...

A1/2
0n M1A1/2

0n V0n · · · A1/2
0n MmA1/2

0n V0n

 W−1
0n


VT

01A1/2
01 M1A1/2

01 · · · VT
0nA1/2

0n M1A1/2
0n

...
...

...

VT
01A1/2

01 MmA1/2
01 · · · VT

0nA1/2
0n MmA1/2

0n

 (N −GQ).

(12)

Note (12) is the empirical version of (4). We write ζ =
(
β(−1)T,γT

)T
for the parameters of the parametric portion.

Using the reparametrization θ∗ = θ + Pζ, there is a 1-1 mapping between (θ∗, ζ) and (θ, ζ). Thus the problem
of minimizing Qn(θ, ζ) over (θ, ζ) is equivalent to minimizing over (θ∗, ζ). We will show in Lemma 2 that ∥P∥op

is bounded despite its diverging dimension. This means that a rn -consistent estimator (̂θ, ζ̂) is equivalent to a
rn-consistent estimator

(̂
θ
∗
, ζ̂

)
. In the following, we always regard the parameters as (θ∗, ζ) , and we simply write

Qn (θ∗, ζ) for the QIF objective we are minimizing when using such a reparametrization and do the same for
other quantities that depend on the parameters α = (θ, ζ). Fixing θ∗ at θ̂

∗
= θ̂ + P̂ζ, then obviously ζ̂ minimizes

Qn

(̂
θ
∗
, ζ

)
.

Let Ui = N0i − G
(
Xiβ0

)
P, where this can be interpreted as orthogonalized predictors for the parametric

part. Define Q0n(ζ) = g0n(ζ)TW0ng0n(ζ), with g0n(ζ) = 1
n
∑

i g0i(ζ), g0i(ζ) =
(
gT

0i1(ζ), . . . , gT
0im(ζ)

)T
, g0iℓ(ζ) =

VT
0iA

1/2
0i MℓA−1/2

0i

(
ϵi − A0iG

(
XT

i β
) (̂
θ
∗
− θ∗0

)
− A0iUi

(
ζ − ζ0

))
.

Let ζ̃ be the minimizer of Q0n(ζ). We first establish the asymptotic normality of ζ̃. Obviously, Q0n(ζ) is a
quadratic function of ζ with a close-form minimizer

ζ̃ = ζ0 +
(
ST

0nW−1
0n S0n

)−1
ST

0nW−1
0n

1
n

∑
i

K0i

(
ϵi − A0iG

(
XT

i β0

) (̂
θ
∗
− θ∗0

))
,

where S0n =
1
n
∑

i K0iA0iUi. To establish the asymptotic normality of ζ̃, we need to show

ST
0nW−1

0n
1
n

∑
i

K0iA0iG
(
XT

i β0

) (̂
θ
∗
− θ∗0

)
= op

(
n−1/2

)
.

We note that θ̂
∗
− θ∗0 has a nonparametric rate and a naive bound would fail to show the op

(
n−1/2

)
rate above.

However, it turns out the above is exactly zero due to the definition of P. In fact, the first order condition of the
optimization problem (12) is just

ST
0nW−1

0n
1
n

∑
i

K0iA0iG
(
XT

i β0

)
= 0.

To show ζ̂ has the same asymptotic distribution as ζ̃, we need to establish

sup∥∥∥∥ζ−ζ0

∥∥∥∥≤Crn

∣∣∣∣Qn

(̂
θ
∗
, ζ

)
− Q0n(ζ)

∣∣∣∣ = op(1/n), (13)

and
Q0n(ζ) − Q0n (̃ζ) ≥ C∥ζ − ζ̃∥2. (14)

Indeed, if (13) and (14) hold, we will have for any ϵ > 0,

inf
∥ζ−ζ

∥=ϵ/
√

n

Qn

(̂
θ
∗
, ζ

)
− Qn

(̂
θ
∗
, ζ̃

)
≥ C∥ζ − ζ̃∥2 − op(1/n) > 0.

Since ζ̂ minimizes Qn

(̂
θ
∗
, ζ

)
, the above implies ∥̂ζ − ζ̃∥∞ ≤ ∥̂ζ − ζ̃∥ = op

(
n−1/2

)
, and thus ζ̂ has the same

asymptotic distribution as ζ̃, which finishes the proof.
Note that (13) is already shown in (10), where the more stringent assumption for Theorem 2 makes the rate
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op(1/n) instead of op

(
r2

n

)
, and (14) is shown in Lemma 3.

Lemma 2. The operator norm (largest singular value) of P defined in (12) is bounded.

Proof of Lemma 2. We have the closed-form

P =


1

n

∑
i

G
(
Xiβ0

)T A0iKT
0i

 W−1
0n

1
n

∑
i

K0iA0iG
(
Xiβ0

)

−1

1
n

∑
i

G
(
Xiβ0

)T A0iKT
0i

 W−1
0n

1
n

∑
i

K0iA0iN0i

 .
The sample averages that appear above (note W0n is also a sample average) are obviously converging to their
population counterparts, and we thus only consider the population quantities.

First, E
[
G

(
Xiβ0

)T A0iK0iℓ

]
and E [K0iℓA0iN0i] are both submatrices of E

[
VT

0iA
1/2
0i MℓA1/2

0i V0i

]
, and thus their

operator norms are bounded. Second, the quantity that we take the inverse of is a principal submatrix∑
ℓ

E
[
VT

0iA
1/2
0i MℓA1/2

0i V0i

]
W−1

0n E
[
VT

0iA
1/2
0i MℓA1/2

0i V0i

]
,

whose eigenvalues are bounded away from zero and infinity, and thus
1

n

∑
i

G
(
Xiβ0

)T A0iKT
0i

 W−1
0n

1
n

∑
i

K0iA0iG
(
Xiβ0

)

−1

also has bounded eigenvalues.
The next lemma proves (14).

Lemma 3. Q0n(ζ) − Q0n (̃ζ) ≥ C∥ζ − ζ̃∥2.

Proof of Lemma 3. Using that Q0n(ζ) is a quadratic form with minimizer ζ̃, we have

Q0n(ζ) − Q0n (̃ζ) ≥ λmin(D)
∥∥∥∥ζ − ζ̃∥∥∥∥2

,

where λmin(D) denotes the minimum eigenvalue of the matrix

D =

1
n

∑
i


VT

0iA
1/2
0i M1A1/2

0i Ui
...

VT
0iA

1/2
0i MℓA1/2

0i Ui




T

W−1
0n

1
n

∑
i


VT

0iA
1/2
0i M1A1/2

0i Ui
...

VT
0iA

1/2
0i MℓA1/2

0i Ui


 ,

which is a principal submatrix of

D′ :=

 1
n
∑

i


VT

0iA
1/2
0i M1A1/2

0i
(
G

(
Xiβ0

)
,Ui

)
...

VT
0iA

1/2
0i MℓA1/2

0i
(
G

(
Xiβ0

)
,Ui

)



T

W−1
0n

·

 1
n
∑

i


VT

0iA
1/2
0i M1A1/2

0i
(
G

(
Xiβ0

)
,Ui

)
...

VT
0iA

1/2
0i MℓA1/2

0i
(
G

(
Xiβ0

)
,Ui

)

 .

Noting Ui = N0i −G
(
Xiβ0

)
P, we have

(
G

(
Xiβ0

)
,Ui

)
= V0i

(
I −P
0 I

)
.

Since ∥P∥op is bounded, both (
I −P
0 I

)
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and its inverse (
I P
0 I

)
have bounded eigenvalues. Furthermore, since W−1

0n has eigenvalues bounded away from zero, and the sample
average in the definition of D′ can be approximated by its population counterpart, we only need to show that∑

ℓ

E
[
VT

0iA
1/2
0i MℓA1/2

0i V0i

]⊗2

has eigenvalues bounded away from zero, which is true by assumption.

9.3. Proof of Asymptotic Properties of PQIF Estimators in Ultra-High Dimension
For convergence rate, we only need to show

inf
∥α−α0∥=Lrn

Qn(α) +
p∑

j=1

qλp

(∣∣∣β j

∣∣∣) + q∑
k=1

qλq (|γk |) > Qn (α0) +
p∑

j=1

qλp

(∣∣∣β0 j

∣∣∣) + q∑
k=1

qλq (|γ0k |) . (15)

We already see in (7) that inf∥α−α0∥=Lrn Qn(α) > Qn (α0). We will show when ∥α − α0∥ ≤ Lrn, qλp

(∣∣∣β j

∣∣∣) ≥
qλp

(∣∣∣β0 j

∣∣∣) , j = 1, . . . , p (similarly we can show qλq (|γk |) ≥ qλq (|γ0k |) , k = 1, . . . , q
)
, which immediately implies

(15). Indeed, when j > ps, qλp

(∣∣∣β j

∣∣∣) ≥ 0 = qλp

(∣∣∣β0 j

∣∣∣) . On the other hand, when j ≤ ps, since
∣∣∣β0 j

∣∣∣ ≥ Cλp and∣∣∣∣̂β j − β0 j

∣∣∣∣ ≤ ∥α − α0∥ = o
(
λp

)
, both

∣∣∣β0 j

∣∣∣ and
∣∣∣∣̂β0 j

∣∣∣∣ are large enough to be in the region of the domain of qλp that is

nonzero by the specific expression of the SCAD penalty, and thus qλp

(∣∣∣β j

∣∣∣) = qλp

(∣∣∣β0 j

∣∣∣).
Next we consider variable selection consistency. Suppose, by way of contradiction, that β̂ j∗ , 0 for some

j∗ ∈ {ps + 1, . . . , p}, and components of γ̂ can be similarly dealt with. Define β̌ such that its j∗-component is zero
while other components are equal to those of β̂. We will show that

Qn(α̌) +
p∑

j=1

qλp

(∣∣∣β̌ j

∣∣∣) + q∑
k=1

qλq

(∣∣∣γ̌ j

∣∣∣) < Qn(α̂) +
p∑

j=1

qλp

(∣∣∣∣̂β j

∣∣∣∣) + q∑
k=1

qλq

(∣∣∣̂γk

∣∣∣) , (16)

which leads to a contradiction. In fact, in Lemma 4, we show Qn(α̌) − Qn (α0) = Op

(
λp

)
∥α̃ − α̂∥. Furthermore,

by the definition of β̌ which only differs from β̂ in the j∗-th component, we have

p∑
j=1

qλp

(∣∣∣β̌0 j

∣∣∣) − p∑
j=1

qλp

(∣∣∣∣̂β j

∣∣∣∣) = −qλp

(∣∣∣∣̂β j∗

∣∣∣∣) = −λp

∣∣∣∣̂β j∗

∣∣∣∣ ,
where the last step is due to

∣∣∣∣̂β j∗

∣∣∣∣ ≤ ∥∥∥α̂ − α0
∥∥∥ = op

(
λp

)
implying

∣∣∣∣̂β j∗

∣∣∣∣ is in the region of the domain of qλp (.) that
is a linear function by the specific expression of the SCAD penalty. This finishes the proof of (16).

Lemma 4. Uniformly for j∗ = ps + 1, . . . , p, where α̌ below implicitly depends on j∗,

Qn(α̂) − Qn(α̌) = Op


√(

H3 + H2 ps + qs
)

logp
n

+
√

H + ps + qs

 rn

∣∣∣∣̂β j∗

∣∣∣∣ .
Proof of Lemma 4. The proof is based on Taylor’s expansion largely the same as in Lemma 1. We only briefly

present some of the calculations for illustration. We decompose

Qn(α̂) − Qn(α̌)

=
(
gn(α̂) − gn(α̌)

)T W−1
0n g0n (α0) + g0n (α0)T

(
W−1

n (α) −W−1
n (α̌)

)
g0n (α0)

+ g0n (α0)T W−1
0n

(
gn(α̂) − gn(α̌)

)
+ · · · ,

(17)

where we omitted the higher order terms. Consider the first term as an example.
∥∥∥g0n (α0)

∥∥∥ = Op (rn) using (e) of
Lemma 1. For gn(α̂) − gn(α̌), similar to the calculations in Lemma 1 we can get that, for example, the main terms
of
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∑
i G

(
Xiβ̂

)
A1/2

i (α̂)MℓA−1/2
i (α̂)

(
Yi − µi(α̂)

)
−

∑
i G

(
Xiβ̌

)
A1/2

i (α̌)MℓA−1/2
i (α̌)

(
Yi − µi(α̌)

)
are ∑

i

{
Ġ

(
Xiβ0

)
A1/2

0i MℓA−1/2
0i +

1
2

G
(
Xiβ0

)
A1/2

0i diag
(
µ̈0i ⊙ η̇

(
Xiβ0

))
−

1
2

G
(
Xiβ0

)
A−3/2

0i diag
(
µ̈0i ⊙ η̇

(
Xiβ0

))} (
Xi( j∗) ⊙ ϵi

)
β̂ j∗

+
∑

i

G
(
Xiβ0

)
A1/2

0i MℓA1/2
0i diag

(
η̇
(
Xiβ0

))
Xi( j∗)β̂ j∗ ,

(18)

where the T -dimensional vector Xi( j∗) is the j∗ -th column of Xi. The first term of (18) has mean zero, and is of
order Op

( √
nH3logp

∣∣∣β̂ j∗
∣∣∣), where the logarithmic term comes from applying Bernstein’s inequality to get uniform

bound over j∗. The second term in (18) is more easily derived to be of order n
√

H
∣∣∣∣̂β j∗

∣∣∣∣ . This and similar bounds
would give ∥∥∥gn(α̂) − gn(α̃)

∥∥∥ = Op


√(

H3 + H2 ps + qs
)

logp
n

+
√

H + ps + qs

 ∣∣∣∣̂β j∗

∣∣∣∣ .
Then the first term in (17) would be of order Op

(√
(H3+H2 ps+qs)logp

n +
√

H + ps + qs

)
rn

∣∣∣∣̂β j∗

∣∣∣∣ . The third term in

(17) is easily seen to be of the same order, while the second term in (17) can be shown to be of smaller order as is
also the case in (10).

References

[1] An, P., M. Feitosa, S. Ketkar, A. Adelman, S. Lin, I. Borecki, and M. Province (2009, December). Epistatic interactions of CDKN2B-
TCF7L2 for risk of type 2 diabetes and of CDKN2B-JAZF1 for triglyceride/high-density lipoprotein ratio longitudinal change: evidence
from the Framingham Heart Study. BMC proceedings 3 Suppl 7, S71.

[2] Bai, Y., W. K. Fung, and Z. Y. Zhu (2009). Penalized quadratic inference functions for single-index models with longitudinal data. Journal
of Multivariate Analysis 100(1), 152–161.

[3] Cai, L., H. Wu, D. Li, K. Zhou, and F. Zou (2015). Type 2 diabetes biomarkers of human gut microbiota selected via iterative sure
independent screening method. PloS one 10(10), 1–15.

[4] Carroll, R. J., J. Fan, I. Gijbels, and M. P. Wand (1997). Generalized partially linear single-index models. Journal of the American
Statistical Association 92(438), 477–489.

[5] Cho, H. and A. Qu (2013). Model selection for correlated data with diverging number of parameters. Statistica Sinica 23(2), 901–927.
[6] Dawber, T. R., G. F. Meadors, and F. E. Moore Jr (1951). Epidemiological approaches to heart disease: the Framingham Study. American

Journal of Public Health and the Nations Health 41(3), 279–286.
[7] Fan, J. and R. Li (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American

Statistical Association 96(456), 1348–1360.
[8] Fan, J. and J. Lv (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society:

Series B 70(5), 849–911.
[9] Fang, Y., Y. Qin, N. Zhang, J. Wang, H. Wang, and X. Zheng (2015). DISIS: prediction of drug response through an iterative sure

independence screening. PloS one 10(3), 1–13.
[10] Franks, P. W. (2011). Gene× environment interactions in type 2 diabetes. Current diabetes reports 11(6), 552.
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