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GPLSIM: An R Package for Penalized
Spline Estimation for Generalized
Partially Linear Single-index Models
by Tianhai Zu and Yan Yu

Abstract Generalized partially linear single-index models (GPLSIM) are important tools in non-
parametric regression. They extend popular generalized linear models to allow flexible nonlinear
dependence on some predictors while overcoming the “curse of dimensionality”. We develop an R
package GPLSIM that implements efficient penalized spline (P-spline) estimation of GPLSIM, pro-
posed by Yu and Ruppert (2002) and Yu et al. (2017), for a response variable from a general exponential
family. The package provides functions that allow users to fit GPLSIMs via penalized splines with
various link functions, select smoothing tuning parameter λ against generalized cross validation or
alternative choices, and visualize the estimated unknown univariate function of single-index term. In
this paper, we discuss the implementation of GPLSIM in detail, and illustrate the use case through a
sine-bump simulation study with various links and a real-data application to an air pollution data.

Introduction

A popular approach to analyzing the relationship between a response variable and a set of predictors
is generalized linear models or GLM (McCullagh and Nelder, 1989), where the conditional mean of the
response variable is linked to a linear combination of predictors via a link function. Although GLM is
simple and easy to interpret, in many complex real data applications the underlying linear assumption
is often violated. Generalized partially linear single-index models (GPLSIM) (e.g. Carroll et al. (1997),
Yu and Ruppert (2002), Yu et al. (2017)) are flexible semiparametric models that allow for a non-linear
relationship while retaining ease of interpretation. In particular, GPLSIM include a partial linear
component zγ, and importantly a nonparametric single-index component, effectively reducing the
dimensionality of p-dimensional predictors x to a univariate single index xθ with a flexible univariate
function φ(xθ), avoiding the “curse of dimensionality" in multivariate nonparametric regression.
GPLSIM reduce to popular single-index models (Ichimura, 1993; Härdle et al., 1993; Xia and Härdle,
2006) when there are no partial linear terms. Another popular special case is partially linear models
(Härdle et al., 2012) when there is only one predictor in the nonparametric component.

GPLSIM and the reduced models have been studied extensively in the literature. Applications
lie in various fields, for example, discrete choice analysis, dose-response models, credit scoring,
Framingham heart study etc. (Yu et al. (2017) and references there in). Yu and Ruppert (2002), Xia
and Härdle (2006), and Liang et al. (2010) studied partially linear single-index models for continuous
responses. For responses from a general exponential family, Carroll et al. (1997) proposed local linear
approach via quasi-likelihood for GPLSIM estimation. However, as noted in Yu and Ruppert (2002),
the algorithm using local methods in Carroll et al. (1997) may suffer from some computational issues
and become unstable. Yu and Ruppert (2002) proposed a stable and computationally expedient
approach using penalized splines (P-splines) with non-linear least square minimization. Yu et al. (2017)
further proposed an efficient profile likelihood algorithm for the P-splines approach to GPLSIM.

We develop a package GPLSIM in R using penalized splines for efficient estimation of the un-
known univariate function in GPLSIM following Yu and Ruppert (2002) and Yu et al. (2017). The
GPLSIM R package mainly implements the P-spline profile likelihood estimation method in Yu et al.
(2017) utilizing the function gam in the state-of-the-art R package mgcv. A similar object structure has
been used for straightforward computation and implementation. A side benefit is that our GPLSIM
package will enjoy improvements and features as those made to the mgcv package. For example, mgcv
1.5 added smoothness selection method “REML" and “ML" in addtion to “GCV” to its core function
“gam()”, and GPLSIM can enjoy those new features naturally. In addition, our GPLSIM package also
implements the simultaneous non-linear least square minimization methods for continuous responses
in Yu and Ruppert (2002) as an alternative option.

The rest of the paper is organized as follows. In the next section, we review the GPLSIM model and
the penalized spline estimation for GPLSIM. Next, we discuss the estimation algorithm implemented
in this package. The following section describes the main features of the functions provided. The
section “real data and simulation examples” illustrates the use of GPLSIM in R via an air pollution
example and a sine-bump simulation study. The last section concludes the paper.
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An overview of generalized partially linear single-index models

The GPLSIM model

For given predictor vectors of p-dimensional X = x and q-dimensional Z = z, and under the
assumption of a general exponential family of the conditional density of a response variable Y, the
conditional mean E(Y|x, z) can be modeled by

E(Y|x, z) := µ(x, z) = g−1{φ (xθ) + zγ}, (1)

where the single-index parameter θ maps the p-dimensional predictors x to a univariate single index
xθ by a linear projection, and φ(·) is a univariate unknown function, while g{·} is a known link
function. ‖θ‖ = 1 with first element θ1 positive for identifiability (Yu and Ruppert, 2002).

One of the main challenges to estimate model (1) is that the p-dimensional single-index parameter
θ is nested within the unknown univariate function φ(·), and hence a highly nonlinear problem.

Review of penalized spline estimation for GPLSIM

When the single-index parameter θ or the single-index u = xθ is given, we can estimate the unknown
univariate function φ(·) with penalized splines (Ruppert et al., 2003) such that φ(u) ≈ H(u)β. The
systematic component of GPLSIM can then be approximated by

g{µ(x, z)} = H(xθ)β + zγ, (2)

where ω = (θ, β, γ) is the column parameter vector, H(·) is the spline basis, and β is the spline
coefficient vector.

There are many choices of the spline basis functions H(·), such as B-spline, truncated power basis,
thin-plate spline, and their variations. For simplicity, we first illustrate using a truncated power basis
of degree d:

H(u)β = β0 + β1u + · · ·+ βdud +
K

∑
k=1

βd+k (u− vk)
d
+ ,

where H(u) =
{

1, u, . . . , ud, (u− v1)
d
+ , . . . , (u− vK)

d
+

}
are spline bases with K interior knots placed

at (v1, . . . , vK). Quadratic or cubic splines are commonly used. The interior knots are usually placed
equally spaced or at equally-spaced quantiles within the domain.

Another popular choice of spline basis is the B-spline basis. Any B-spline basis functions H(·) of
degree higher than 0, can be defined by the following Cox–de Boor recursion formula (Boor, 2001):

Hk,d(u) =
u− uk

uk+d−1 − uk
Hk,d−1(u) +

uk+d − u
uk+d − uk+1

Hk+1,d−1(u),

where

Hk,0(u) =
{

1, uk ≤ u ≤ uk+1
0, otherwise.

One of the appealing features of the B-spline is that, unlike truncated power basis, B-spline basis
functions have local supports that can result in high numerical stability.

To avoid overfitting, a roughness penalty controlled by a smoothing parameter λ is applied to the
log-likelihood. Specifically, we can obtain the penalized log-likelihood estimator of ω by maximizing
the following penalized log-likelihood function:

Qn,λ(ω) =
1
n

Ln(ω)− 1
2

λβ>Dβ

=
1
n

n

∑
i=1

[yiξ (xi, zi; ω)− b {ξ (xi, zi; ω)}]− 1
2

λβ>Dβ,
(3)

where ξ is the natural parameter in generalized linear models, µ(xi, zi) = b′ {ξ (xi, zi; ω)}, for obser-
vations i = 1, · · · , n, and D is a positive semidefinite symmetric matrix. Common penalty matrix
includes usual quadratic integral penalty on second derivatives of φ(·) or alternatively a diagonal
penalty matrix with its last K diagonal elements equal to one and the rest equal to zero (see e.g.
Ruppert and Carroll (2000); Yu and Ruppert (2002)), which in effect penalizes the coefficients of the
truncated power basis at the jump of d-th derivatives.

Maximizing the penalized log-likelihood function (3) can be achieved in several ways. We mainly
focus on implementing an efficient profile log-likelihood method in Yu et al. (2017). We also present an
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option to implement a simultaneous nonlinear least square method in Yu and Ruppert (2002).

The selection of smoothing parameter λ is important as it controls the tradeoff between over-
smoothing (possible underfitting) and under-smoothing (possible overfitting). We use an outer
iteration to select λ against some selection criterion, as recommended by Wood (2011). For the default
choice, we adopt generalized cross validation (GCV) to select the smoothing parameter λ. Alternatively,
we can consider maximum likelihood (ML) (Anderssen and Bloomfield, 1974) or restricted maximum
likelihood (REML) (Wahba, 1985) based approaches. A nice feature is that we can directly adopt
criteria that have been provided by the “gam()” function arguments from R package mgcv, which is
one of the main components in the implementation of our GPLSIM estimation algorithm.

Algorithm

We present the main algorithm for fitting the generalized partially linear single-index models (GPLSIM)
with penalized splines estimation with profile likelihood in detail as following:

Input: Non-linear predictor vector of p-dimensional X = x, partially linear predictor vector of
q-dimensional Z = z, and a response vector Y = y of family=family.

Output: The estimated single-index parameter θ̂, spline coefficient β̂, partially linear
coefficient γ̂, and fitted response ŷ.

1 Obtain an initial estimate θ̂
(0) of the single-index parameter θ from a generalized linear model

(default), or a user-provided initial list.
2 With an estimate of θ (equivalently, the single index {ui = xiθ : i = 1, . . . , n} ), the spline

coefficient β and partially linear coefficient γ can be written as implicit functions of θ to
maximize penalized log-likelihood:

Q (β, γ, λ; u1, . . . , un)
= 1

n ∑n
i=1 [yiξ (ui, zi; β, γ)− b {ξ (ui, zi; β, γ)}]

− 1
2 λβ>Dβ.

The roughness penalty parameter λ is selected using generalized cross-validation score
(default) or alternative options.

3 Given the spline coefficient vector β̂λ(θ) and partially linear coefficient vector γ̂λ(θ) as
implicit functions of θ, obtain the profile log-likelihood estimator of the single-index
parameter θ by maximizing:

Q(θ) =
1
n

n

∑
i=1

[
yiξ
(

xiθ, zi; β̂λ(θ), γ̂λ(θ)
)

−b
{

ξ
(

xiθ, zi; β̂λ(θ), γ̂λ(θ)
)}]

.

4 With the estimated profile log-likelihood estimator θ̂ of the single-index parameter, obtain the
final estimator β̂ of spline coefficient and γ̂ of partially linear coefficient via step 2.

5 Obtain the final fitted response vector ŷ from model (1).

Alternatively, for continuous responses under the default assumption of f amily = gaussian,
maximizing the penalized log-likelihood estimator equation (3) is equivalent to minimizing the
penalized sum of squared errors:

1
n

n

∑
i=1
{yi −H(xiθ)β− ziγ}2 +

1
2

λβ>Dβ.

For the simultaneous non-linear least square minimization methods in Yu and Ruppert (2002), we can
directly apply a standard nonlinear least square (NLS) optimization algorithm on minimization of the
above penalized sum of squared errors with respect to the full parameter ω = (θ, β, γ). This is useful
to facilitate joint inferences as described in Yu and Ruppert (2002). This algorithm as presented in Yu
and Ruppert (2002) is also implemented in our GPLSIM package.

The GPLSIM package

The R package GPLSIM consists of one core estimation function GPLSIM and some supporting
functions such as visualization of the estimated curve for the unknown univariate function. The R
package GPLSIM depends on the R package mgcv (Wood, 2001) and package minpack.lm.
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Main fitting function

The main estimation function GPLSIM implements the profile likelihood algorithm of Yu et al. (2017)
as well as the non-linear least square method of Yu and Ruppert (2002) described in the previous
section, while the profile likelihood being the default method for a response variable from a general
exponential family.

The usage and input arguments of the main fitting function GPLSIM are summarized as follows:

gplsim(Y, X, Z, family = gaussian, penalty = TRUE, penalty_type = "L2", scale = -1,
smoothing_select = "GCV.Cp", profile = TRUE, bs="ps", user.init=NULL)

This function takes three required arguments: the response variable Y in vector format, the single-
index nonlinear predictors X in matrix or vector format and the linear predictors Z in matrix or vector
format. Please note that all the input covariates are required to be numeric variables.

This function also takes several optional arguments for finer controls. The optional argument
family is a family objects for models from the built-in R package stats. This object is essentially a
list of functions and expressions for defining link and variance functions. Supported link functions
include identity; logit, probit, cloglog; log; and inverse for the family distributions of gaussian,
binomial, Poisson, and gamma respectively. The optional argument penalty is a logical variable to
specify whether to use penalized splines or un-penalized splines to fit the model. The default value is
TRUE to implement penalized splines. The optional argument penalty_type is a character variable,
which specifies the type of penalty used in the penalized splines estimation. The default penalty
type is L2 penalty, while L1 is also supported. The optional argument scale is a numeric indicator
with a default value set to -1. Any negative value including -1 indicates that the scale of response
distribution is unknown and thus needs to be estimated. Another option is 0 signaling scale of 1
for Poisson and binomial distribution and unknown for others. Any positive value will be taken as
the known scale parameter. The optional argument smoothing_select is another character variable
that specifies the criterion used in the selection of a smoothing parameter λ. The supported criteria
include “GCV.Cp”,“GACV.Cp”, “ML”,“P-ML”, “P-REML” and “REML”, while the default criterion is
“GCV.Cp”. The optional argument profile is a logical variable that indicates whether the algorithm
with profile likelihood or algorithm with NLS procedure is used. The default algorithm is set to the
profile likelihood algorithm. The optional argument bs is a character variable that specifies the spline
basis in the estimation of unknown univariate function of single index. The default has been set to
“ps”(P-splines with B-spline basis) while other choices are “tr” (truncated power basis), “tp” (thin plate
regression splines) and others. The last optional argument user.init is a numeric vector of the same
length as the dimensionality of single-index predictors. The users can use this argument to pass in
any appropriate user-defined initial single-index coefficients based on prior information or domain
knowledge. The default value is NULL, which instructs the function to estimate initial single-index
coefficients by a generalized linear model. The function GPLSIM returns an object class of GPLSIM,
which extends the gam object and glm object.

The documentation of gam object from the package mgcv can also be used as an external reference
for some of the arguments as they are connected to the function gam. More specifically, smooth-
ing_select and scale in gplsim are passed into gam as the method argument and scale respectively.

Other functions

plot.si(gplsim.object,reference = NULL)

This function plots the estimated curve for the unknown univariate function φ from a gplsim-fitted
model object. If the reference object is provided, this function will add a reference line accordingly.

summary.gplsim(gplsim.object)
print.summary.gplsim(gplsim.object)

The functions summary.gplsim and print.summary.gplsim provide detailed information related
to the fitted model and summarize the results as illustrated in the next section. These two functions
can be called directly by applying functions print and summary to gplsim.object.

simulation_data <- generate_data(n,true.beta=c(1, 1, 1)/sqrt(3),family="gaussian")

The function generate_data generates data from a sine-bump model with user-defined single
index coefficients θ via the argument true.beta. If single-index coefficients θ are not provided, this
function will generate data against the default coefficients θ = (1, 1, 1)/

√
3. The default response is

Gaussian distributed, while binomial and Poisson distributions are also supported.
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Real data and simulation examples

In this section, we demonstrate the use of the R package GPLSIM via a real data analysis and a
sine-bump simulation study.

Air Pollution Data

We consider an environmental study on how meteorological variables X affect the concentration of the
air pollutant ozone y. Meteorological variables X contains: wind speed, temperature, and radiation
with n = 111 daily measurements. As the response variable y is a continuous variable, we adopt an
identity link for Gaussian distribution. Note that we use the same sequence of predictor variables to
keep the results directly comparable to Yu and Ruppert (2002).

library(gplsim)
data(air)
y=air$ozone # response
X=as.matrix(air[,c(3,4,2)]) # single-index term
colnames(X)=colnames(air[,c(3,4,2)])
Z=NULL

We allow all three predictor variables temperature, wind speed, and radiation entering the single-
index term to capture the non-linear dependency as in Yu and Ruppert (2002). This model collapses to
the single-index model as there is no partially linear term in the model.

air.fit <- gplsim(y,X,Z=NULL,family = gaussian,bs="ps")
summary(air.fit)

#>
#> Family: gaussian
#> Link function: identity
#>
#> Formula:
#> y ~ s(a, bs = bs, fx = fx, m = 2, k = k)
#>
#> partial linear coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> Intercept 3.247784 0.043024 75.488 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> single index coefficients:
#> Estimate
#> temperature 0.5442
#> wind_speed -0.8386
#> radiation 0.0223
#>
#> Approximate significance of smooth terms:
#> edf Ref.df F p-value
#> s(a) 8.1431 9.173 34.867 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.741 Deviance explained = 76%
#> GCV = 0.22391 Scale est. = 0.20546 n = 111

The estimated normalized single-index coefficients with the profile likelihood algorithm are
comparable to the results in Yu and Ruppert (2002). As shown in the figure below, the estimated
unknown function is quite monotonic and exhibits clear curvature. The estimated coefficient is positive
for temperature, negative for wind speed, positive for radiation but in a smaller magnitude per the
reported summary.

plot.si(air.fit,yscale=c(1,6),plot_data = TRUE)
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The above figure gives the single-index curve estimate of the air pollution data. The presence of
curvature with multiple turning points is observed. This non-linear dependency is unlikely to capture
by a linear model. The single index that contains information from temperature, wind speed, and
radiation contributes to the ozone concentration differently on different segments.

We also implemented the simultaneous non-linear least square minimization algorithm in Yu and
Ruppert (2002), where the original code was written in Matlab.

air.fit <- gplsim(y,X,Z=Z,family = gaussian,profile = FALSE,bs="ps")
summary(air.fit)

#>
#> Family: gaussian
#> Link function: identity
#>
#> Formula:
#> y ~ s(a, bs = bs, fx = !penalty, m = 2, k = 13)
#>
#> partial linear coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> Intercept 3.247784 0.043056 75.431 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> single index coefficients:
#> Estimate
#> temperature 0.5340
#> wind_speed -0.8451
#> radiation 0.0235
#>
#> Approximate significance of smooth terms:
#> edf Ref.df F p-value
#> s(a) 8.0012 9.0533 35.22 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.74 Deviance explained = 75.9%
#> GCV = 0.22394 Scale est. = 0.20578 n = 111
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Simulations

We present a popular sine-bump simulation study that adopts the design as in (Carroll et al., 1997;
Yu et al., 2017; Yu and Ruppert, 2002). The package can accommodate responses from a general
exponential family, where the conditional mean is generated from the following model

g−1{sin {π (xθ− c1) / (c2 − c1)}+ zγ},

where g{·} is a link function; θ = (1, 1, 1)/
√

3 with each predictor x from independent uniform in [0, 1];
γ = 0.3; z is a binary predictor with 1 for even observations and 0 otherwise; c1 =

√
3/2− 1.645/

√
12

and c2 =
√

3/2 + 1.645/
√

12 are two constants.

For demonstration, we first show simulation codes and outputs on one random replication. We
use the supporting function generate_data to generate simulation data.

set.seed(2020)
# Gaussian family
# parameter settings
n=1000
M=200
true.theta = c(1, 1, 1)/sqrt(3)
# This function generates a sine-bump simulation data
data <- generate_data(n,true.theta=true.theta,family="gaussian",ncopy=M)
y=(data$Y)[[1]] # Gaussian error with standard deviation 0.1
X=data$X # single-index predictors
Z=data$Z # partially linear predictors

We use default settings of the main estimation function GPLSIM on the simulated data, assuming
no prior information. The codes and summary results are provided as follows.

result <- gplsim(y,X,Z,user.init=NULL,family = gaussian)
summary(result)

#>
#> Family: gaussian
#> Link function: identity
#>
#> Formula:
#> y ~ s(a, bs = bs, fx = fx, m = 2, k = k) + z
#>
#> partial linear coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> Intercept 0.6439549 0.0046579 138.251 < 2.2e-16 ***
#> Z.1 0.3057685 0.0065963 46.354 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> single index coefficients:
#> Estimate
#> X.1 0.5786
#> X.2 0.5798
#> X.3 0.5736
#>
#> Approximate significance of smooth terms:
#> edf Ref.df F p-value
#> s(a) 6.3561 7.4656 2129.9 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.947 Deviance explained = 94.7%
#> GCV = 0.010909 Scale est. = 0.010818 n = 1000

From the above summary results of the fitted model, we see that the estimated single-index
coefficients θ̂ and partial-linear coefficients γ̂ are quite close to the true parameters. Next, we plot
the average estimated curve for the unknown univariate function over 200 replications. The dashed
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lines are the corresponding 2.5 and 97.5 percentile bound. We observe that the average curve estimate
virtually overlays the true curve.

#plot the estimated univariate function curve
plot.si(result,plot_data = FALSE)
par(new=T)
sort_index = order(X%*%true.theta)
lines((X%*%true.theta)[sort_index],data$single_index_values[sort_index],lty=1,
xaxt="n", yaxt="n",col="red")
legend("topright",legend=c("GPLSIM fit", "True"),lty=c(1,1),col = c("black","red"))
add_sim_bound(data)

single index

m
ea

n

Mean Fit Curve
True Curve

Table 1 reports the mean, standard error (se) and bias for each parameter estimate with sample
size n = 1000 over M = 200 replications. We use canonical link functions, that is, identity link for
Gaussian family, logit link for Binomial family, and log link for Poisson family. One can see that the
algorithm for our R package GPLSIM is effective.

Table 1: Summary of parameter estimates for various responses of sample size n = 1000. True
θ = (1, 1, 1)/

√
3, γ = 0.3. The sample mean (mean), standard error (se, in parenthesis), and bias of the

parameter estimates from generalized partially linear single-index models (GPLSIM) by penalized
splines from 200 replications.

Gaussian Binomial Poisson
Mean(se) Bias Mean(se) Bias Mean(se) Bias

θ̂1 0.5771(0.0048) -0.0002 0.5545(0.1040) -0.0228 0.5808(0.0305) 0.0035
θ̂2 0.5774(0.0048) 0.0005 0.5744(0.1111) -0.0029 0.5738(0.0349) -0.0035
θ̂3 0.5765(0.0047) -0.0004 0.5717(0.1126) -0.0056 0.5745(0.0340) -0.0028
γ̂ 0.2995(0.0065) -0.0004 0.3094(0.1312) 0.0094 0.2978(0.0430) -0.0022

Summary

In this paper, we present an R package GPLSIM that implements penalized splines estimation of
generalized partial linear single-index models in Yu et al. (2017) and Yu and Ruppert (2002). The
approaches are able to accurately estimate the single-index coefficients, partial-linear coefficients, as
well as the unknown univariate function with expedient computation. We believe this package is
useful to practitioners in diverse fields such as finance, econometrics, and medicine, where a flexible
and interpretable model is desirable.
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